• Title/Summary/Keyword: SURE 경계값

Search Result 2, Processing Time 0.017 seconds

Denoising on Image Signal in Wavelet Basis with the VisuShrink Technique Using the Estimated Noise Deviation by the Monotonic Transform (웨이블릿 기저의 영상신호에서 단조변환으로 추정된 잡음편차를 사용한 VisuShrink 기법의 잡음제거)

  • 우창용;박남천
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2004
  • Techniques based on thresholding of wavelet coefficients are gaining popularity for denoising data because of the reasonable performance at the low complexity. The VisuShrink which removes the noise with the universal threshold is one of the techniques. The universal threshold is proportional to the noise deviation and the number of data samples. In general, because the noise deviation is not known, one needs to estimate the deviation for determining the value of the universal threshold. But, only for the finest scale wavelet coefficients, it has been known the way of estimating the noise deviation, so the noise in coarse scales cannot be removed with the VisuShrink. We propose here a new denoising method which removes the noise in each scale except the coarsest scale by Visushrink method. The noise deviation at each band is estimated by the monotonic transform and weighted deviation, the product of estimated noise deviation by the weight, is applied to the universal threshold. By making use of the universal threshold and the Soft-Threshold technique, the noise in each band is removed. The denoising characteristics of the proposed method is compared with that of the traditional VisuShrink and SureShrink method. The result showed that the proposed method is effective in denoising on Gaussian noise and quantization noise.

  • PDF

Image Signal Denoising by the Soft-Threshold Technique Using Coefficient Normalization in Multiwavelet Transform Domain (멀티웨이블릿 변환영역에서 계수정규화를 이용한 Soft-Threshold 기법의 영상신호 잡음제거)

  • Kim, Jae-Hwan;Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.255-265
    • /
    • 2007
  • In case of wavelet coefficients have correlation, in image signal denoising using wavelet shrinkage denoising method, the denoising effect for the image signal is reduced when the wavelet shrinkage denoising method is used. The coefficients of multiwavelet transform have correlation by pre-filters. To solve the degradation problem in multiwavelet transform, V Sterela suggested a new pre-filter for the Universal threshold or weighting factors to the threshold. In this paper, to improve the denoising effect in the multiwavelet transform, the coefficient normalizing method that the coefficient are divided by estimated noise deviation is adopted to the transformed multiwavelet coefficients in the course of wavelet shrinkage technique. And the thresholds of universal, SURE and GCV are estimated using normalized coefficients and tried to denoise by the wavelet shrinkage technique. We compared PSNRs of denoised images for each thresholds and confirmed the efficiency of the proposed method.

  • PDF