• Title/Summary/Keyword: SUPER concrete

Search Result 291, Processing Time 0.024 seconds

Field Application of the Difference of Setting Time of Improving Super Retarding Agent of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 초지연제를 활용한 응결시간차공법의 현장적용)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Kwon, Hae-Won;Bae, Yeoun-Ki;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.57-60
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown concerning rising land prices and efficient use of building are gradually Manhattanized mainly the grand scaled residential buildings, structure of the buildings relates to safety and so the very thick mat concrete is selected as the foundation of architectures. Because mat concretes can not be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred because of the time lag. Thus, this study checked the efficiency to apply "The hydration heat controlling method of mass concrete for horizontal partition pouring construction" to the skyscraper sites under construction at Haiundai in Busan. After applying this method, the result of observation that the cracks by hydration heat in all over the placement surface did never be founded. Also, in case of the economic analysis that the hydration heat reduction method using super retarding agent by difference of setting time is approximately 80% cheaper than the hydration heat reduction method by pipe cooling in the construction expenses.

  • PDF

An Experimental Study on Internal Force By Using Fiber Rope Concrete Beam (섬유로프 인장 배치 시 콘크리트 보의 내력에 관한 실험적 연구)

  • Choi, Jae-Nam;Jin, Sung-Il;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • This is a study to confirm how to improve and substitute the existing re-bar with other material such as a fiber rope, especially super fiber rope having much more strong tensile strength. 6(b) different fiber rope reinforced beam with a section of $20{\times}30cm$ have been made and tasted as variables designed in the study. The larger diameter of fiber rope, the more capacity of the beam, even though fiber reinforced beam are increased with ten(10)percent, each. Lower capacity of fiber-reinforced beam than normal RC beam has been analyzed theoretically and empirically, based on a lot of experiences of the same size beam test. Fiber rope-reinforced concrete beam does not have sufficient capacity than RC beam due to insufficient bonding capacity of fiber rope in concrete. It leads to decrease beam bearing capacity and crack around lower center of the beam. Therefore, bonding reinforcement of fiber rope beam such as pinning a triangles steel pin in each knot of fiber rope contributes to improving bearing capacity of fiber rope reinforcing beam.

Settlement and Mass Change of the Porous Concrete Using Super Absorbent Polymer (고흡수성 수지를 활용한 다공 구조 콘크리트 가능성 연구)

  • Jo, Jae-Hyun;Park, Jae-Woong;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.311-312
    • /
    • 2023
  • In this study, porous concrete with improved functionality was developed by using superabsorbent polymer (SAP) to provide rooting space for plants. The depth of settlement and mass change according to the substitution and addition rate of SAP were determined by investigating the functional performance of SAP and the volume change upon saturation. Test results indicated the depth of penetration settlement increased as the substitution rate of SAP increased, but the mass change could not be confirmed as the addition rate of SAP increased. The instability of the specimens due to the excessive volume change of SAP, as well as the osmotic pressure phenomenon according to the pH concentration, were identified as the cause. Therefore, future studies are needed to investigate the appropriate substitution and addition rate of SAP, as well as to reduce the osmotic pressure phenomenon according to the pH concentration, which would contribute to the improvement of the functional performance of vegetation concrete.

  • PDF

Estimation of Setting Time of Super Retarding Mortar Using Settimeter (세티메타를 이용한 초지연 모르타르의 응결시간 추정)

  • Jeong, Yeong-Jin;Hyun, Seung-Yong;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.673-682
    • /
    • 2023
  • This study investigates the delay in setting characteristics of mortar influenced by variations in super retarding agent(SRA) content, curing temperature, and strength levels. Utilizing a settimeter, the research introduces an objective approach to accurately determine the setting time of concrete with SRA under diverse environmental and material mixing conditions at construction sites. The findings indicate that the settimeter, in conjunction with a nonlinear regression model, can effectively estimate the setting time of super retarding mortar. Optimal management of the initial setting is recommended at approximately 45ST and the final setting around 80ST. This methodology enables more effective quality control in the setting times of super retarding concrete.

Structural Design of Mid-Story Isolated High-Rise Building - Roppongi Grand Tower

  • Nakamizo, Daiki;Koitabashi, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.233-242
    • /
    • 2018
  • Since the response reduction effect on over 200-meter-tall resulting from the seismic isolation system is smaller in general than low-rise and mid-rise buildings, mid-story isolated buildings are considered to reduce the response in the upper part above the isolation story, however, in many cases, the acceleration response just below the isolation story is likely to be the largest. This paper presents the structural design schemes, the design of the main structural frames, and the constructions of a 230-meter-tall super high-rise building with mid-story isolation mechanism integrated in Roppongi, Tokyo. Moreover, this paper shows how the architectural and structural design for integrating a mid-story isolation system in a super high-rise building has been conducted and what solutions have been derived in this project. The realization of this building indicates new possibilities for mid-story isolation design for super high-rise buildings.

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

Plastic Shrinkage Cracking Reduction of Press Concrete Using Admixtures in Basement (주차장바닥에서 혼화재료들을 사용한 누름콘크리트의 소성수축 균열저감)

  • Kim, Young-Su;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.416-424
    • /
    • 2019
  • In Korea, press concrete in basements is mainly applied using plain concrete. This system has undesirable defects such as cracks caused by plastic shrinkage and irregular temperature distribution. To solve this problem, metal lath and fibers have been used in the past. However, they have not been effective in controlling cracks. This study analyzed the reduction of plastic shrinkage cracking for press concrete using various admixtures in a basement has been. In the air contents test, the specimens with various admixtures showed air contents similar to plain concrete (4.5±1.5%). The specimens using silica fume, super plasticizer agent, and SBR showed higher compressive strength by about 10-15% than plain concrete. Cracking decreased when the MC, super plasticizer, and SBR were added. When MC was used in the concrete, the plastic shrinkage did not occur.

An Experimental study on the properties and the concrete packing ability of Super Flowing concrete for adapt tp CFT (CFT에 적용하기 위한 고유동화 콘크리트의 물성 및 충전성에 관한 실험적 연구)

  • 강동현;강용학;박희곤;김종구;정근호;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.757-762
    • /
    • 2001
  • CFT concrete has high flowing, high strength and resistance to material separation to use skyscraper structure. It is considered that concrete could fill the lower part of Diaphragm up. This kinds of CFT concrete hardly apply to building below 20 stories. Using the common use strength concrete to building below 20 stories brings to reduce construction cost. This concrete is needed that valid fluidity and packing ability with unit cement content as common use strength concrete. Offering a fundamental data and proportioning in CFT concrete of below 20 stories, it is executed basic property test, analysis of proportioning and mock up test.

  • PDF