• Title/Summary/Keyword: SU-8 Photo Resist

Search Result 10, Processing Time 0.023 seconds

A Study on SU-8 Fabrication Process for RF and Microwave Application (RF 및 Microwave 응용을 위한 SU-8 공정 연구)

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.65-66
    • /
    • 2009
  • This paper describes a procedure developed to fabricate negative photo resist SUMS to a semi-insulating (SI)-GaAs-based substrate. SU-8 is attractive for micromachine multi-layer circuit fabrication, because it is photo-polymerizable resin, leading to safe, and economical processing. This work demonstrates SUMS photo resist can be used for RFIC/MMIC application.

  • PDF

Fabrication of Micro-channels for Wave-Micropump Using Stereolithography and UV Photolithography (광조형법과 UV 포토리소그래피를 이용한 웨이브 마이크로펌프 미세 채널 제작)

  • Loh, Byoung-Gook;Kim, Woo-Sik;Shim, Kwang-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.128-135
    • /
    • 2007
  • Micro-channels for a wave micropump have been fabricated using the Stereolithography and UV Photolithography. The micro-channel with a channel height of $500\;{\mu}m$ was fabricated with stereolithography. UV photolithography was used for producing micro-channels with a channel length less than $100\;{\mu}m$. The fabrication process data including spinning rpm, pre-bake and post-bake time, and develop time for single layer and multiple layer 3D micro-structures using SU-8 photo resist are experimentally found. A film mask printed with a 40,000 dpi laser printer was used for UV lithography and micro-structures in the order of tens of micrometers in dimension were successfully fabricated.

High-Aspect-Ratio Nanoscale Patterning in a Negative Tone Photoresist

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • The demand for high-aspect-ratio structures has been increasing in the field of semiconductors and other applications. Here, we present the commercially available negative-tone SU-8 as a potential resist that can be used for direct patterning of high-aspect-ratio structures at the submicron scale and the nanoscale. Such resist patterns can be used as polymeric molds to create high-aspect-ratio metallic submicron and nanoscale structures by using electroplating. Compared with poly (methyl methacrylate) (PMMA), we found that the negative tone resist required an exposure dose that was less than that of PMMA of equal thickness by a factor of 100-150. Patterning of up to 4:1 aspect ratio SU-8 structures with a minimum feature size of 500 nm was demonstrated. In addition, nanoimprint lithography was studied to further extend the aspect ratio to realize a minimum feature size of less than 10 nm with an extremely high aspect ratio in the negative resist.

Processing Study for the Micro Pillar for Piezoelectric Energy Harvest (압전 에너지 하베스트를 위한 마이크로 필라 공정 연구)

  • Yun, Seok-Woo;Lee, Ku-Tak;Lee, Kyoung-Su;Jeong, Soon-Jong;Kim, Min-Soo;Cho, Kyoung-Ho;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.601-604
    • /
    • 2010
  • In this study, the piezoelectric energy harvester was investigated employing the pillar structure with the diameter size of 50~500 um. Usually, the aspect ratio between the height and diameter was related with the piezoelectric performance. High aspect ratio was showed the low electric noise and high piezoelectric properties than low aspect ratio. Therefore, we have selected the Su-8 photo-resist and modified lithography process to manufacture the pillar structure with height above the 250 ${\mu}m$. In this presentation, we will report the process and properties of micro pillar structure based on the PMN-PZT (Pb$(Mg_{1/3}Nb_{2/3})O_3$-PbZrTiO$_3$) materials.

Processing Study for the Piezoelectric Energy Harvest of Composit Structure (복합구조의 압전 에너지 하베스터를 위한 공정연구)

  • Lee, Kyoung-Soo;Shin, Dong-Jin;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.286-289
    • /
    • 2012
  • In this paper, we have proposed piezoelectric energy harvester employing the pillar structure with the diameter size of 500 um. So we have selected the Su-8 photo-resist and modified lithography process to manufacture the pillar structure with height above the $500{\mu}m$. Simultaneously, we tried to make a comparative study to use ceramic bulk - polymer structure In this paper, we will report the process and properties of micro pillar structure based on the PMN-PZT ($Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrTiO_3$) materials. Finally, We will propose a method for generating electrical energy with a piezoelectric element using vibration, an energy source can be obtained from the "clean" energy.

A Study on the High Efficiency PR Strip technology by using the Ozone Process (오존공정을 이용한 고효율 PR 제거기술 연구)

  • Son, Young-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.22-27
    • /
    • 2007
  • we have been studied on the realization of the boundary layer controlled ozone process and related facilities in order to apply for the photo-resist strip process in the semiconductor and flat panel display manufacturing. By means of developing the technology for the high concentration ozone production, it was possible to realized the boundary layer control ozone process by vapor. As a result of the silicon wafer PR strip test, we obtained the strip rate of about 400nm/min at the ozone concentration of 16wt% and flow rate of 8[liter/min.].

Fabrication Method of 3D Feed Horn Shape MEMS Antenna Array Using MRPBI(Mirror Reflected Parallel Beam Illuminator) with Inclined X-Y-Z Stage (MRPBI를 이용한 3D Feed Horn Shape MEMS Antenna Array의 제조)

  • Park, Jong-Yeon;Kim, Kun-Tae;Moon, Sung;Pak, Jung-Ho;Park, Jong-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1914-1917
    • /
    • 2001
  • 3D Feed Horn Shape MEMS Antenna Array는 적외선 이미지 소자 또는 Tera hertz band 등에서 많은 응용을 할 수 있는 장점을 가진 MEMS 구조체 이다. 하지만 일반적인 MEMS 공정을 이용해서 3D Feed Horn Shape MEMS antenna array를 구현하기는 적합하지 않았다. 본 논문에서는 마스크와 웨이퍼가 일체 된 형태의 경사된 척이 초 저속으로 회전하면서 노광을 할 수 있는 새로운 방식과 미러 반사구조를 이용해서 평행광을 얻을수 있는 노광장치 (MRPBI : Mirror Reflected Parallel Beam Illuminator) System제작방법을 제안하였다. 3D Feed Horn Shape MEMS Antenna의 구조적인 high apect ratio의 특성에 의해서 SU-8과 PMER Negative Photo resist를 이용한 기본적인 실험을 통해 3D 구조체의 구현 가능성을 증명하였다. 또한 Microbolometer의 성능향상을 위한 이론적인 3D MEMS Antenna Model들을 HFSS(High Frequency Structure Simulator)을 이용해서 그 최적구조를 제안하고 3D MEMS Antenna Gain 값을 비교 분석하였다.

  • PDF