• 제목/요약/키워드: STT missile

검색결과 15건 처리시간 0.03초

STT 미사일의 모델링 오차 보상을 위한 적응 제어 (Adaptive control to compensate the modeling error of STT missile)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1292-1295
    • /
    • 1996
  • This paper proposes an adaptive control technique for the autopilot design of STT missile. Dynamics of the missile is highly nonlinear and the equilibrium point is vulnerable to change due to fast maneuvering. Therefore nonlinear control techniques are desirable for the autopilot design of the missile. The nonlinear controller requires the exact model to obtain satisfactory performance. Generally a look-up table is used for the dynamic coefficients of a missile, so there must be coefficients error during actual flight, and the performance of the nonlinear controller using these data can be degraded. The proposed adaptive control technique compensates the nonlinear controller with modeling error resulting from the error of aerodynamic data and disturbance. To investigate the usefulness, the proposed method is applied to autopilot design of STT missile through simulations.

  • PDF

샘플링 시간에 대해 개선된 Singular Perturbation 기반 STT missile 디지털 autopilot 설계 (Design of an improved STT missile digital autopilot with respect to sampling time)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.468-471
    • /
    • 1997
  • In this paper, we investigate the time-sampling effects on the digital implementation of singular perturbation based STT autopilot with excellent performance and propose a compensation method for the time-sampling effects. In digitization of analog STT autopilot, it is found that the stability margin of the fast dynamics is mostly affected to lead to rapid decrease. Under the this analysis, a composite digital controller with additional compensator for fast dynamics is proposed to improve the time-sampling effect and a simulation verifies the result.

  • PDF

STT(Skid-to-Turn)미사일의 매개변수화 어파인 모델링 및 제어 (New Parametric Affine Modeling and Control for Skid-to-Turn Missiles)

  • 좌동경;최진영;김진호;송찬호
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.727-731
    • /
    • 2000
  • This paper presents a new practical autopilot design approach to acceleration control for tail-controlled STT(Skid-to-Turn) missiles. The approach is novel in that the proposed parametric affine missile model adopts acceleration as th controlled output and considers the couplings between the forces as well as the moments and control fin deflections. The aerodynamic coefficients in the proposed model are expressed in a closed form with fittable parameters over the whole operating range. The parameters are fitted from aerodynamic coefficient look-up tables by the function approximation technique which is based on the combination of local parametric models through curve fitting using the corresponding influence functions. In this paper in order to employ the results of parametric affine modeling in the autopilot controller design we derived a parametric affine missile model and designed a feedback linearizing controller for the obtained model. Stability analysis for the overall closed loop sys-tem is provided considering the uncertainties arising from approximation errors. the validity of the proposed modeling and control approach is demonstrated through simulations for an STT missile.

  • PDF

공력 조종 STT 유도탄의 동특성 해석 (Analysis of dynamic characteristics of aerodynamically controlled STT missiles)

  • 송찬호;전병을
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1308-1311
    • /
    • 1996
  • We propose a new linearized model which can be used very efficiently for the design and analysis of the autopilot of aerodynamically controlled skid-to-turn missiles. Proposed model is based on the linearized equations of the missile dynamics derived in the aerodynamic frame where xz plane contains the missile longitudinal axis and velocity vector. However, to take the effect due to the small perturbation of the missile body into consideration, we introduce a new frame which is identical to the aerodynamic frame in the trim state but after small perturbation it moves fixed with the missile body, and finally, the proposed model is set up in this frame. It is shown by nonlinear simulations and stability analysis of a numerical example that the new model describes the missile motion better than the conventional one linearized in the body frame with a certain amount of simplification.

  • PDF

외란 적응 제어를 적용한 미사일 비선형 제어 (Nonlinear model inversion missile control with disturbance accommodating control)

  • 조현식;김인중;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1500-1503
    • /
    • 1996
  • This paper combines the disturbance accommodating control(DAC) and nonlinear model inversion control for a skid-to-turn(STT) missile. The missile autopilot may be designed to be robust with respect to a variety of uncertainties. We proposes the two step control design method. Nonlinear model inversion control is used as the main design method. Due to the model uncertainties and external disturbances, the exact nonlinear model inversion can not be achieved. DAC is designed to detect, to identify, and to compensate these uncertainties. DAC's disturbance observer is linear. Thus it is easy to implement. It does not cause the convergence problem due to coexistence between the modeling uncertainties and external disturbances. 6 DOF simulation results show that the proposed method may improve the missile tracking performance.

  • PDF

신경회로망과 순환최소자승법을 이용한 Skid-to-Turn 미사일의 공력 파라미터 추정 (Estimation of Aerodynamic Coefficients for a Skid-to-Turn Missile using Neural Network and Recursive Least Square)

  • 김윤환;박균법;송용규;황익호;최동균
    • 한국항공운항학회지
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2012
  • This paper is to estimate aerodynamic coefficients needed to determine the missiles' controller design and stability from simulation data of Skid-to-Turn missile. Method of determining aerodynamic coefficients is to apply Neural Network and Recursive Least Square and results were compared and researched. Also analysing actual flight test data was considered and sensor noise was added. Estimate parameter of data with sensor noise added and estimated performance and reliability for both methods that did not need initial values. Both Neural Network and Recursive Least Square methods showed excellent estimate results without adding the noise and with noise added Neural Network method showed better estimate results.

매개변수화 어파인 모델에 기반한 꼬리날개제어 유도탄의 적응제어 (Adaptive Control Based on a Parametric Affine Model for Tail-Controlled Missiles)

  • 최진영;좌동경;송찬호
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.547-555
    • /
    • 2003
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (Skid-to-Turn) missiles. We derive an analytic uncertainty model from a parametric affine missile model developed by the authors. Based on this analytic model, an adaptive feedback linearizing control law accompanied by a sliding mode control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme are demonstrated by simulation.

산삼약침의 자가치료능에 대한 제언 (Proposal of Self Targeting Therapy of Mountain Ginseng Pharmacopuncture)

  • 조병준;권기록
    • 대한약침학회지
    • /
    • 제14권2호
    • /
    • pp.75-80
    • /
    • 2011
  • Objectives & Methods: This research may accounts for Self Targeting Therapy (STT) which is a peculiar operation of Mountain Ginseng Pharmacopuncture. The objectives include analysis of its mechanism and reporting of clinical cases. Results: 1. STT of Mountain Ginseng Pharmacopuncture refers to the function of curing and making a diagnosis of the disease by oneself. 2. The mechanism of STT is to pursue the latent illness and make the remedial action by oneself. In this process, the symptom of latent disease is outwardly expressed. 3. The most popular symptom expressed is manifestation of pecular sensation along the specific meridians. Then followed headache, dizziness, powerless and etc. Diverse symptoms can be expressed by a patient. 4. If the revealed symptoms are carefully observed, the cause of the disease or the patient state can be diagnosed easily. Conclusion: The mechanism of STT of Mountain Ginseng Pharmacopuncture can be a great asset in clinical trials. Other studies on STT of Mountain Ginseng Pharmacopuncture should be followed in the future.

매개변수화 어파인 모델에 기반한 꼬리날개 제어유도탄의 적응제어 (Adaptive Control based on a ParametricAffine Model for tail-control led Missiles)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.2-2
    • /
    • 2000
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (skid-to-Turn) missiles. First, we derive an analytic uncertainty model from a parametricaffine missile model developed by the authors. Based on this analytic model, an adaptive feedbacklinearizing control law accompanied by a sliding model control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme is demonstrated by simulation.

  • PDF

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF