• Title/Summary/Keyword: STSAT

Search Result 160, Processing Time 0.027 seconds

Engineering Model Design and Implementation of STSAT-2 On-board computer (과학기술위성 2호 탑재 컴퓨터의 EM 개발 및 구현)

  • Yu, Chang-Wan;Im, Jong-Tae;Nam, Myeong-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • The Engineering Model of STSAT-2 on-board computer(OBC) was developed and tested completely with other sub-systems. The on-board computer of STSAT-2 has a high- performance PowerPC processors and a structure of centralized network communication. In addition, a lot of logics are implemented by Field Programmable Gate Array, such as interrupt controller, watchdog timer and UART. It could make the weight and size of OBC lighter and smaller. Also, the STSAT-2 on-board computer has more improved tolerance against Single Event Upsets and faults than that of the STSAT-1.

STSAT-2 PFM Environmental Test Result (과학기술위성 2호 준비행모델 환경시험 결과)

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup;Rhee, Seung-Woo;Seo, Jung-Ki;Jang, Tae-Sung;Lee, Sang-Hyun;Kim, Sung-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • STSAT-2 (Science & Technology SATellite-2) is a Korea micro-satellite which will be launched at NARO Space center in Koheung, Korea. Launch vehicle for STSAT-2 is KSLV-1 (Korea Space Launch Vehicle-1) which is the first development in Korea space launch vehicle program. Starting development in 2002 EM(Engineering Model), PFM(Proto-Flight Model), and FM(Flight Model) were developed completely. Electrical functional test, space environmental test, and launch vehicle environmental test on system level are performed for testing those development models. In this paper we report the results of STSAT-2 PFM space environmental test and launch vehicle environmental test which is successfully completed.

  • PDF

Fine Digital Sun Sensor(FDSS) Design and Analysis for STSAT-2

  • Rhee, Sung-Ho;Jang, Tae-Seong;Ryu, Chang-Wan;Nam, Myeong-Ryong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1787-1790
    • /
    • 2005
  • We have developed satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2) scheduled to be launched in 2007. The analog sun sensors which have been continuously developed since the 1990s are not adequate for satellites which require fine attitude control system. From the mission requirements of STSAT-2, a compact, fast and fine digital sensor was proposed. The test of the fine attitude determination for the pitch and roll axis, though the main mission of STSAT-2, will be performed by the newly developed FDSS. The FDSS use a CMOS image sensor and has an accuracy of less than 0.01degrees, an update rate of 20Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize the weight while maintaining sensor accuracy by a rigorous centroid algorithm. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA) in acquiring images from the CMOS sensor, and storing and processing the data. This paper also describes the analysis of the optical performance for the proper aperture selection and the most effective centroid algorithm.

  • PDF

TIME SYNCHRONIZATION STRATEGY BETWEEN ON-BOARD COMPUTER AND FIMS ON STSAT-1 (과학기술위성 1호 탑재 컴퓨터와 탑재체 FIMS의 시간 동기화 기법)

  • 곽성우;박홍영
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 2004
  • STSAT-1 was launched on sep. 2003 with the main payload of Far Ultra-violet Imaging Spectrograph(FIMS). The mission of FIMS is to observe universe and aurora. In this paper, we suggest a simple and reliable strategy adopted in STSAT-1 to synchronize time between On-board Computer(OBC) and FIMS. For the characteristics of STSAT-1, this strategy is devised to maintain reliability of satellite system and to reduce implementation cost by using minimized electronic circuits. We suggested two methods with different synchronization resolutions to cope with unexpected faults in space. The backup method with low resolution can be activated when the main has some problems.

펄스형 플라즈마 추력기 (PPT)를 이용한 STSAT-2 자세 및 궤도제어에 대한 연구

  • 신구환;남명룡;임종태
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.61-61
    • /
    • 2004
  • 과학기술위성 1호(STSAT-1)는 위성의 자세를 제어하기 위하여 Reaction Wheel Assembly(RWA)를 적용하였으며, 위성의 무게중심에 Wheel의 회전수에 비례하는 관성모멘트를 발생시켜 자세를 제어하였다. 과학기술위성 2호(STSAT-2)는 과학기술위성 1호에 적용하였던 반작용휠(RWA)과 펄스형태로 동작시켜 위성의 자세 및 궤도제어를 위하여 요구하는 추력을 얻을 수 있는 펄스형 전기 추진시스템(Pulsed Plasma Thruster: PPT)이 탑재된다. (중략)

  • PDF

Development of a Fine Digital Sun Sensor for STSAT-2

  • Rhee, Sung-Ho;Lyou, Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2). Based on the mission requirements of STSAT-2, the conventional analog-type sun sensors were found to be inadequate, motivating the development of a compact, fast and fine digital sun sensor (FDSS). The FDSS uses a CMOS image sensor and has an accuracy of less than 0.03degrees, an update rate of 5Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize its weight. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA), which acquires images from the CMOS sensor, and stores and processes the image data. The sensor accuracy is maintained by a rigorous centroid algorithm. This paper describes the FDSS designs, realizations, tests and calibration results.

Engineering Model Design and Implementation Proto Flight Model of Reaction Wheel Assembly Interface Unit for STSAT-2 (과학기술위성 2호 Reaction Wheel Assembly Interface Unit Proto Flight Model 개발)

  • Kim, Se-Il;Gang, Gyeong-In;Lee, Seong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.88-92
    • /
    • 2006
  • Proto Flight Model of Reaction Wheel Assembly Interface Unit(RIU) for STSAT-2 was developed. The RIU of STSAT2 has three major functions for interface between satellite system and RWAs. It has switches for RWA main power, communication Mux. and communication line driver.

A Satellite Attitude Compensation Scheme Using Sun Sensor (태양센서를 이용한 인공위성의 자세보정기법)

  • Rhee, Sung-Ho;Lim, You-Chol;Kwak, Hwy-Kuen;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.703-710
    • /
    • 2007
  • This paper presents an attitude determination scheme for the Science and Technology Satellite-2(STSAT-2) using Fine Digital Sun Sensor(FDSS). The FDSS has been developed for STSAT-2, and exhibits the accuracy of 0.032degree in $1{\sigma}$. To be specific, the attitude information from the sensor is exploited to compensate for Fiber Optic Gyro(FOG) mounted on STSAT-2, and Kalman filter model is derived and implemented. To show the effectiveness of the present compensation scheme, computer simulations have been carried out resulting in the attitude errors within a bound.

과학기술위성 2호 운영개념

  • Lee, Seung-Hun;Keum, Jung-Hoon;Park, Jong-Oh;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-85
    • /
    • 2004
  • In this study, the operations concept of STSAT-2 which will be launched by KSLV-1, the first Korean Space Launch Vehicle, from Naro is explained. The major tasks of STSAT-2 is acquiring Lyman-alpha images of Sun by LIST(Lyman-alpha Imaging Solar Telescope) payload and the exact position of the satellite by calculating distance between STSAT-2 and SLR ground stations using SLR(Satellite Laser Ranging) payload. Also spacecraft technology verification is performed.

  • PDF

Analysis and Comparison of Error Detection and Correction Codes for the Memory of STSAT-3 OBC and Mass Data Storage Unit (과학기술위성 3호 탑재 컴퓨터와 대용량 메모리에 적용될 오류 복구 코드의 비교 및 분석)

  • Kim, Byung-Jun;Seo, In-Ho;Kwak, Seong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.417-422
    • /
    • 2010
  • When memory devices are exposed to space environments, they suffer various effects such as SEU(Single Event Upset). Memory systems for space applications are generally equipped with error detection and correction(EDAC) logics against SEUs. In this paper, several error detection and correction codes - RS(10,8) code, (7,4) Hamming code and (16,8) code - are analyzed and compared with each other. Each code is implemented using VHDL and its performances(encoding/decoding speed, required memory size) are compared. Also the failure probability equation of each EDAC code is derived, and the probability value is analyzed for various occurrence rates of SEUs which the STSAT-3 possibly suffers. Finally, the EDAC algorithm for STSAT-3 is determined based on the comparison results.