• Title/Summary/Keyword: STS/Al/STS

검색결과 111건 처리시간 0.022초

집합조직 분석에 의한 5겹 STS/Al 복합재 클래드 압연 시 변형상태 해석 (Interpretation of Strain States during Clad-Rolling of STS/Al 5 Ply Composites by Means of Texture Analysis)

  • 강형구;박준수;박수호;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2005
  • Two composites of five plies of STS/Al/Al/Al/STS and STS/Al/STS/Al/STS were produced by roll-cladding at $350^{\circ}C$ from ferritic stainless steel (STS) and aluminum (Al) sheets. In order to analyze the strain states during roll-cladding, the evolution of textures at different through-thickness positions in the roll-clad composites was investigated. Simulations with the finite element method (FEM) disclosed that a strain state which was similar to that of normal rolling with a high friction between roll surface and Al sample led to the formation of texture gradients in the Al sheets in the STS/Al/Al/Al/STS composite. Differences in the material velocity of STS and Al in the rolling direction gave rise to the formation of the shear texture in the Al sheets in the STS/Al/STS/Al/STS composite.

  • PDF

압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과 (Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties)

  • 송준영;김인규;이영선;홍순익
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향 (Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials)

  • 배동현;정수정;조영래;정원섭;정호신;강창룡;배동수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

STS 강의 $O_2$ 및 Al함량이 용접용입량에 미치는 영향 (Effect of $O_2$ and Al Coantent on the Weld Penetration)

  • 김희봉;김정호;이창희
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.65-78
    • /
    • 1997
  • The effect of $O_2$and Al contents and the variation of welding parameters such as arc currents, welding speed on the weld penetration was investigated. Examination of weld penetration using GTAW was accomplished in the ferritic STS410L and austenitic STS304. Good penetration could be controlled by the variation of $O_2$ and Al contents in STS304. However, influences of $O_2$ and Al contents on the ferritic STS410L are far less than those on the austenitic STS304. Welding parameters should be considered first before controlling $O_2$ and Al contents for a good penetration in ferritic STS410L. In the simulation study under the stationary heat sources, the results of simulation and experiment have a similar tendency.

  • PDF

스텐리스강(STS304)과 알루미늄합금(Al6351) 마찰용 접부의기계적 특성에 관한 연구 (A Study on the mechanical properties of STS304-Al6351 friction welding zone)

  • 김의환
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.131-136
    • /
    • 2000
  • This study deals with the mechanical properties of STS304-Al351 friction welding zone. Main results are as follows ; under the condition of upset pressure 75MPa, the tensile strength of STS304-al6351 friction weld interface was higher than that of Al6351 base metal, and the highest tensile strength(290MPa) was obtained at upset pressure 125MPa. The hardness profile across the weld interface shows that the hardness of both STS304 and Al6351 is higher around the weld interface, and sharply increased hardness on the STS304 side is related with the plastic deformation of micro volume. As the result of analyzing the tensile fracture, it showed perfect soft fracture.

  • PDF

압연에 의한 STS/AI/STS 클래드판재 제조시 롤과 STS 사이의 마찰의 영향 (The Effect of friction between Roll and STS the Roll Cladding Behavior of STS/Al/STS Sandwich Sheet)

  • 정영훈;지광구;서진유;신명철
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.482-486
    • /
    • 2002
  • Sandwich sheets composed of stainless steel/aluminum/stainless steel were produced by roll cladding. In order to investigate the effect of the friction between roll and cladding sample, the lubrication condition of the roll surface was varied. Clad rolling without lubrication gave rise to a small increment of the normal strain of aluminum in the rolling direction. This experimental result was confirmed by FEM modeling. Through-thickness hardness gradients in the mid aluminum layer was successfully explained by variations of the strain state through thickness layers. FEM modeling implied that cladding without lubrication led to a large shear strain variation at the surface of aluminum layer.

스테인리스강과 알루미늄 롤-클래드 시 변형상태 연구 (Study on Strain States during Roll-Cladding of Stainless Steel and Aluminum)

  • 김종국;허무영;지광구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.221-224
    • /
    • 2004
  • The clad samples of five plies of sheets comprising ferritic stainless steel (STS) and aluminum (Al) were prepared by roll-cladding at $350^{\circ}C$. The evolution of strain states and textures during roll-cladding of STS430/AA3003/AA3003/AA3 003/STS430 and STS430/AA3003/STS430/AA3003/STS430 was investigated by measurements of crystallographic textures and by simulations with the finite element method (FEM). Because the deformation mainly occurs in the Al layer during roll-cladding, the present investigation was focused on the Al layers located. The stacking sequence of sheet materials in the clad samples played an important role in the evolution of strain states during roll-cladding.

  • PDF

조직생검용 Needle의 세라믹 코팅에 관한 연구 (A Study on the Ceramic Coating of Biopsy Needle)

  • 조성만;정협재;김만태;이경업
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.121-126
    • /
    • 2009
  • Stainless steel 316L (STS 316L) is widely used as a material of biopsy needle. However it has a side effect that tissue can be damaged by electrochemical operation between tissue and STS 316L. Many studies have been made on the ceramic coating of biopsy needle to reduce the side effect. In this study, STS 316L was coated with three bioceramics, $Al_2O_3$, $SiO_2$ and $ZrO_2$ using a RF magnetron sputtering method. The effects of ceramic coating on the electrical conductivity and coating strength of ceramic-coated STS 316L were investigated. The results showed that the electrical conductivity of ceramic-coated STS 316L was much lower than that of uncoated STS 316L. The coating strength of $ZrO_2$-coated STS 316L was 30% and 70% higher, respectively than those of $Al_2O_3$-coated STS 316L and $SiO_2_3$-coated STS 316L.

MCFC 양극측에서 Al-Cr피복 스테인레스강 분리판의 내식성평가 (Evaluation of Corrosion Resistance on Al-Cr Coated Stainless Steel Separator for MCFC at Anode Side)

  • 이민호;윤재식;배인성;윤동주;김병일;박형호
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.126-132
    • /
    • 2003
  • In order to evaluate the corrosion resistance at the anode side separator for molten carbonate fuel cell, STS316 and SACC-STS316 (chromium and aluminum were simultaneously deposited by diffusion into STS316 authentic stainless steel substrate by pack-cementation process) were applied as the separator material. In case of STS316, corrosion proceeded via three steps ; a formation step of corrosion product until stable corrosion product, a protection step against corrosion until breakaway occurs, a advance step of corrosion after breakaway. Especially, STS316 would be impossible to use the separator without suitable surface modification because of rapid corrosion rate after formation of corrosion product, occurs the severe problem on stability of cell during long-time operation. Whereas, SACC-STS316 was showed more effective corrosion resistance than the present separator, STS316 due to the intermetallic compound layer such as NiAl, Ni3Al formed on the surface of STS316 specimen. And it is anticipated that, in order to use SACC-STS316 alternative separator at the anode side, coating process, which can lead to dense coating layer, has to be developed, and by suitable pre-treatment before using it, very effective corrosion resistance will be achieved.