• Title/Summary/Keyword: STM model

Search Result 91, Processing Time 0.024 seconds

The Sentence Similarity Measure Using Deep-Learning and Char2Vec (딥러닝과 Char2Vec을 이용한 문장 유사도 판별)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1300-1306
    • /
    • 2018
  • The purpose of this study is to see possibility of Char2Vec as alternative of Word2Vec that most famous word embedding model in Sentence Similarity Measure Problem by Deep-Learning. In experiment, we used the Siamese Ma-LSTM recurrent neural network architecture for measure similarity two random sentences. Siamese Ma-LSTM model was implemented with tensorflow. We train each model with 200 epoch on gpu environment and it took about 20 hours. Then we compared Word2Vec based model training result with Char2Vec based model training result. as a result, model of based with Char2Vec that initialized random weight record 75.1% validation dataset accuracy and model of based with Word2Vec that pretrained with 3 million words and phrase record 71.6% validation dataset accuracy. so Char2Vec is suitable alternate of Word2Vec to optimize high system memory requirements problem.

System dynamics of scanning tunneling microscope unit

  • Yamada, Hikaru;Endo, Toshiro;Tsunetaka-Sumomogi;Fujita, Toshizo;Morita, Seizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.794-797
    • /
    • 1988
  • G. Binnig and H. Rohrer introduced the Scanning Tunneling Microscope (STM) in 1982 and developed it into a powerful and not to be missed physical tool. Scanning tunneling Microscopy is a real space surface imaging method with the atomic or subatomic resolution in all three dimensions. The tip is scanned over the surface by two piezo translators mounted parallel (X-piezo and Y-piezo) to the surface and perpendicular to each other. The voltage applied to the third piezo (Z-piezo) translator mounted perpendicular to the surface to maintain the tunneling current through the gap at a constant level reflects then the topography of the surface. The feed back control loop for the constant gap current is designed using the automatic control technique. In the designing process of the feed back loop, the identification of the gap dynamics is very complex and has difficulty. In this research, using some suitable test signals, the system dynamics of the gap including the Z-piezo are investigated. Especially, in this paper, a system model is proposed for the gap and Z-piezo series system. Indicial response is used to find out the model. The driving voltage of the Z-piezo and the tunneling current are considered as input and output signals respectively.

  • PDF

과학기술위성3호 비행모델 기능시험 결과

  • Park, Jong-O;Lee, Seong-Se;Lee, Seung-Heon;Son, Jun-Won;Lee, Seung-U;Sin, Gu-Hwan;Jeong, Tae-Jin;Seo, Jeong-Gi;Park, Hong-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.179.2-179.2
    • /
    • 2012
  • 과학기술위성 3호는 우리 은하계의 근적외선 관측, 우주 배경복사 관측 및 지구 지표면의 적외선 영상 획득을 임무로 하는 우주관측용 적외선카메라와 지구 지표면의 적외선 영상획득을 임무로 하는 지구관측용 적외선카메라 그리고 한반도 지역의 다중 스펙트럼 영상을 획득함으로써 대기관측 및 환경감시의 임무를 가지는 소형분광영상카메라를 장착한 우주 및 지구과학 연구용 위성이다. 2007년 개발을 시작하여 시험인증모델(EQM, Engineering& Qualification Model) 개발과 열구조모델 (STM, Structure and Thermal Model)을 개발 완료하였고, 2012년 하반기에 발사를 앞두고 2010년 비행모델 유닛들이 납품되기 시작하여 위성체 시스템 레벨에서의 조립 및 시험을 진행하고 있다. 본 논문에서는 조립 및 기능시험 중 발견된 유닛의 문제들을 해결 과정과 시스템 레벨에서의 전기접합시험, 극성시험, 비행소프트웨어 기능시험, 종합기능시험 및 ETE 시험등 기능 시험의 종류, 목적 그리고 검증 결과를 발표하고자 한다.

  • PDF

과학기술위성3호 비행모델 환경시험 결과

  • Park, Jong-O;Lee, Seong-Se;Lee, Seung-Heon;Son, Jun-Won;Lee, Seung-U;Sin, Gu-Hwan;Jeong, Tae-Jin;Seo, Jeong-Gi;Park, Hong-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.180.1-180.1
    • /
    • 2012
  • 과학기술위성 3호는 우리 은하계의 근적외선 관측, 우주 배경복사 관측 및 지구 지표면의 적외선 영상 획득을 임무로 하는 우주관측용 적외선카메라와 지구 지표면의 적외선 영상 획득을 임무로 하는 지구관측용 적외선카메라 그리고 한반도 지역의 다중 스펙트럼 영상을 획득함으로써 대기관측 및 환경감시의 임무를 가지는 소형분광영상카메라를 장착한 우주 및 지구과학 연구용 위성이다. 2007년 개발을 시작하여 시험인증모델(EQM, Engineering & Qualification Model) 개발과 열구조모델 (STM, Structure and Thermal Model)을 개발 완료하였고, 2012년 하반기에 발사를 앞두고 2010년 비행모델 유닛들이 납품되기 시작하여 위성체 시스템 레벨에서의 조립 및 시험을 진행하고 있다. 본 논문에서는 조립 및 기능시험 완료후 시스템 레벨에서의 진동 시험, 열진공 시험 및 무게특성 시험등 환경시험의 종류, 목적 그리고 검증 결과를 발표하고자 하며, 아울러 발사장에서 수행된 열구조모델에 대한 환경시험 결과를 발표하고자 한다.

  • PDF

Mechanical verification logic and first test results for the Euclid spacecraft

  • Calvi, Adriano;Bastia, Patrizia;Suarez, Manuel Perez;Neumann, Philipp;Carbonell, Albert
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2020
  • Euclid is an optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and the formation of structures over cosmological timescales. The Euclid spacecraft mechanical architecture comprises the Payload Module (PLM) and the Service Module (SVM) connected by an interface structure designed to maximize thermal and mechanical decoupling. This paper shortly illustrates the mechanical system of the spacecraft and the mechanical verification philosophy which is based on the Structural and Thermal Model (STM), built at flight standard for structure and thermal qualification and the Proto Flight Model (PFM), used to complete the qualification programme. It will be submitted to a proto-flight test approach and it will be suitable for launch and flight operations. Within the overall verification approach crucial mechanical tests have been successfully performed (2018) on the SVM platform and on the sunshield (SSH) subsystem: the SVM platform static test, the SSH structure modal survey test and the SSH sine vibration qualification test. The paper reports the objectives and the main results of these tests.

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Shock Separation Test of KOMPSAT-II (다목적 실용위성 2호 충격 분리 시험)

  • 우성현;김홍배;문상무;김영기;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1000-1005
    • /
    • 2003
  • The shock separation test simulates the environmental effects of the spacecraft separation from launch vehicle. The shock separation test for a structural model of KOMPSAT-Ⅱ(Korea Multi-Purpose SATellite Ⅱ) was performed in SITC(Satellite Integration & Test Center) launch environmental test hall at KARI(Korea Aerospace Research Institute) to verify the shock test requirement of the spacecraft, to predict the induced acceleration responses on the primary structures and payloads by the explosion of pyre-lock and to perform mechanical fit check. The spacecraft with S/A was mated vertically to LV(Launch Vehicle) adapter simulator via a clamp band, then hoisted and suspended above a foam test bed by four isolation springs secured to the spacecraft hoist fittings to isolate the payload platform shock wave from the sling elements. For separation process, real pyre-devices were used and the time response signals from 60 accelerometers installed on the interested points was acquired and recorded. The SRS responses for each response channels were calculated and the achieved SRS's on the separation plane was reviewed and evaluated in comparison to the ICD(Interface Control Document) value.

  • PDF

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF