• Title/Summary/Keyword: STEP-LENGTH

Search Result 1,047, Processing Time 0.027 seconds

A Small-Area Hardware Implementation of Hash Algorithm Standard HAS-160 (해쉬 알고리듬 표준 HAS-l60의 저면적 하드웨어 구현)

  • Kim, Hae-Ju;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.715-722
    • /
    • 2010
  • This paper describes a hardware design of hash function processor which implements Korean Hash Algorithm Standard HAS-160. The HAS-160 processor compresses a message with arbitrary lengths into a hash code with a fixed length of 160-bit. To achieve high-speed operation with small-area, arithmetic operation for step-operation is implemented by using a hybrid structure of 5:3 and 3:2 carry-save adders and carry-select adder. It computes a 160-bit hash code from a message block of 512 bits in 82 clock cycles, and has 312 Mbps throughput at 50 MHz@3.3-V clock frequency. The designed HAS-160 processor is verified by FPGA implementation, and it has 17,600 gates on a layout area of about $1\;mm^2$ using a 0.35-${\mu}m$ CMOS cell library.

Single Gyroscope Sensor Module System for Gait Event Detection (보행시점 검출을 위한 단일 각속도 센서모듈 시스템)

  • Kang, Dong-Won;Choi, Jin-Seung;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study was to develop the inertial sensor module system to detect gait event using single angular rate sensor(gyroscope), and evaluate the accuracy of this system. This sensor module is attached at the heel and gait events such as heel strike, foot flat, heel off, toe off are detected by using proposed automatic event detection algorithm. The developed algorithm detect characteristics of pitch data of the gyroscope to find gait event. To evaluate the accuracy of system, 3D motion capture system was used and synchronized with sensor module system for comparison of gait event timings. In experiment, 6 subjects performed 5 trials level walking with 3 different conditions such as slow, preferred and fast. Results showed that gait event timings by sensor module system are similar to that by kinematic data, because maximum absolute errors were under 37.4msec regardless of gait velocity. Therefore, this system can be used to detect gait events. Although this system has advantages of small, light weight, long-term monitoring and high accuracy, it is necessary to improve the system to get other gait information such as gait velocity, stride length, step width and joint angles.

Development of The Yarn Sorting Equipment (khonhook) by Slide Way

  • Nithikarnjanatharn, Jittiwat;Rithinyo, Manote
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.137-144
    • /
    • 2015
  • Development of the yarn sorting equipment (khonhook) by slide way due to the principle of engineering that cause of workers on the long of motion time. The data was collected from the weaving group Ban Nongkok village, Nakornratchasima Province, THAILAND. According to the study, the step of yarn sorting (konhook) was one of the steps that affect long of motion time. The problem was the inadequate capacity equipment. The objective of research was to study and develop the yarn sorting equipment (konhook). The fabric used in the study was 64 meters in length and 1 meter in width. Researchers studied the processes the yarn sorting (konhook) which it consists of seven sub steps, 1) the thread tube setting, 2) yarn bunching, 3) tying a knot at the end of yarn, 4) looping the yarn into a pillar, 5) sorting the yarn (konhook), 6) crossing pillars and 7) taking out the yarn. Researchers focused on studying yarn sorting process (konhook) by designing and creating a device for yarn sorting (konhook) for reducing yarn sorting (konhook) time by the original method performance indicators. The results found that the developed yarn sorting equipment (konhook) ) by slide way could reduce working time from 7.24 minutes to 6.08 minutes of the original equipment yarn sorting (konhook). This means it could make the process 16.02 % faster. This also helps reducing the distance of workers' movement from 2,234 meters to 8 meters. This is 99.64 % shorter.

Analysis on Green BIM based Atrium Sizes in the Early Design Stage (Green BIM기반 초기설계 단계에서 타입별 아트리움의 규모산정에 관한 연구)

  • Jeong, Seung-Woo;Lee, Kweon-Hyoung;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.58-70
    • /
    • 2013
  • This study for establishing specific standards of atrium design aims to discuss design of atrium to consider energy performance atrium in office buildings. In order to evaluate a type and a scale of atrium at the early design stage, modeling details of mass design were set as standards of conceptual design. In the experiment, Project Vasari was used to analyze modeling and energy consumption, based on the LOD 100-step suggested by AIA, because there is no guideline to specify a level of modeling details at each design process. From this analysis, the correlation among a simple-typed atrium and scale and energy load was considered. The result of this research is as follows: First, the single-sided atrium reduced energy the most, and it was followed by three-sided, two-sided, four-sided and continuous-typed ones. On the whole, they could decrease energy by up to about 15%. Also, the atrium with a wide facade facing in the south was more favorable to reduce energy. Second, planning the atrium within 10~30% of the whole building area was more energy efficient. Third, rather than the depth, adjusting the length in designing an atrium could reduce cooling and heating loads by 1.5% per 1m. As explained above, energy performance evaluation considering types and planning elements of atrium helps to assess alternatives in a reasonable way. In particular, considering the use of building needs to be preceded to select a type of atrium, although it is also important to consider its planning elements.

Analysis of Geometric Shape and Displacement in Coastal Structure (해안 구조물의 기하형상과 변위 해석)

  • Mun, Do-Yeoul;Baek, Tae-Kyung;Lee, Tack-Gon;Lee, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.114-123
    • /
    • 2012
  • This study is aimed to assess the stability of cable bridge by determining the geometric shape of the suspension bridge among the domestic coastal structures in public use after their completion of construction and the displacement of the target suspension bridge after public use. For this purpose, this study calculated the length between pylon piers for each period, sag, sag ratio and the displacement of pylon. Compared to the management standards for each step across different pylon behaviors of the target suspension bridge, this study found that the target suspension bridge behaves stably within the maintenance standards. To identify the behaviors of a suspension bridge accurately, the priority is put on the determination of geometric shape. Therefore, it is required to determine the surveyed shape model on a regular basis across public use period and increased traffics, which is expected to contribute considerably to ensuring the stability of the suspension bridge in its maintenance.

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.

Effects of Visual Feedback and Rhythmic Auditory Stimulation on Walking of Stroke Patients Induced by Treadmill Walking Training (시각적 피드백과 리듬청각자극을 통한 트레드밀 보행훈련이 뇌졸중 환자의 보행능력에 미치는 영향)

  • Park, Jin;Kim, Beom-ryong;Kim, Tae-ho
    • Physical Therapy Korea
    • /
    • v.25 no.2
    • /
    • pp.53-61
    • /
    • 2018
  • Background: Stroke patients show abnormal walking patterns due to brain injury. In order to have the desired walking pattern, appropriate stimulation is required to activate the central pattern generator. For this reason, our study performed treadmill ambulatory training with rhythmic auditory stimulation. However we did not consider the influence of visual feedback. Objects: The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation and visual feedback (TRASVF) or treadmill walking training with rhythmic auditory stimulation (TRAS) alone. Methods: Twenty-one stroke patients were divided into two groups: A TRASVF group (10 subjects) and a TRAS group (11 subjects). They received 30 minutes of neuro-developmental therapy (NDT) and walking training for 30 minutes, five times a week for three weeks. Temporal and spatial gait parameters were measured before and after the training period. The Biodex gait trainer treadmill system measured gait parameters. Results: After the training periods, the TRASVF group showed a significant improvement in walking speed, the step length of the affected limb, and time on each foot of the affected limb when compared to the TRAS group (p<.05). Conclusion: The results of this study showed that the treadmill walking training with rhythmic auditory stimulation and visual feedback improved individual gait ability more than the treadmill walking training with rhythmic auditory stimulation alone. Therefore, visual feedback should be considered along with rhythmic auditory stimulation training.

Robotic-assisted gait training applied with guidance force for balance and gait performance in persons with subacute hemiparetic stroke

  • Son, Dong-Wook;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.106-112
    • /
    • 2017
  • Objective: Robot assisted gait training is implemented as part of therapy for the recovery of gait patterns in recent clinical fields, and the scope of implications are continuously increasing. However clear therapy protocols of robot assisted gait training are insufficent. The purpose of this study was to investigate the effects of robot-assisted gait training applied with guidance force on balance and gait performance in persons with hemiparetic stroke. Design: Two group pre-test post-test design. Methods: Nineteen persons were diagnosed with hemiparesis following stroke participated in this study. The participants were randomly assigned to the unilateral guidance group or bilateral guidance group to conduct robot-assisted gait training. All participants underwent robot-assisted gait training for twelve sessions (30 min/d, 3 d/wk for 4 weeks). They were assessed with gait parameters (gait velocity, cadence, step length, stance phase, and swing phase) using Optogait. This study also measured the dynamic gait index (DGI), the Berg balance scale (BBS) score, and timed up and go (TUG). Results: After training, BBS scores were was significantly increased in the bilateral training group than in the unilateral guidance group (p<0.05). Spatiotemporal parameters were significantly changed in the bilateral training group (gait speed, swing phase ratio, and stance phase ratio) compared to the unilateral training group (p<0.05). Conclusions: The results of this study suggest that robot-assisted gait training show feasibility in facilitating improvements in balance and gait performance for subacute hemiparetic stroke patients.

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF

Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System (진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구)

  • Kim, Hyun-Su;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.