• 제목/요약/키워드: STARMA

검색결과 6건 처리시간 0.017초

공간시계열 자료에 대한 STARMA 모형과 STBL 모형의 예측력 비교 (A Comparison on Forecasting Performance of STARMA and STBL Models with Application to Mumps Data)

  • 이성덕;이응준;박용석;주재선;이건명
    • 응용통계연구
    • /
    • 제20권1호
    • /
    • pp.91-102
    • /
    • 2007
  • 본 논문은 공간시계열 자기회귀 이동평균(STARMA) 모형과 공간 시계열 중선형(STBL) 모형에 대해 식별, 추정, 예측 등의 통계적 절차와 특징들을 논하고, 두 모형을 비교하는데 목적이 있다. 사례 연구를 위 해 2001년부터 2006년까지 8개 지역으로부터 보고된 월별 Mumps 자료를 사용했고, 예측오차제곱합(SSF)을 활용하여 두 모형의 적합도를 비교하였다.

Statistical Inference for Space Time Series Model with Application to Mumps Data

  • Jeong, Ae-Ran;Kim, Sun-Woo;Lee, Sung-Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.475-486
    • /
    • 2006
  • Space time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations or as sets of spatial data collected at a number of time points. The major purpose of this article is to formulate a class of space time autoregressive moving average (STARMA) model, to discuss some of the their statistical properties such as model identification approaches, some procedure for estimation and the predictions. For illustration, we apply this STARMA model to the mumps data. The data set of mumps cases consists of the number of cases of mumps reported from twelve states monthly over the years 1969-1988.

  • PDF

공간시계열 모형의 칼만필터 추정과 예측 (Kalman-Filter Estimation and Prediction for a Spatial Time Series Model)

  • 이성덕;한은희;김덕기
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.79-87
    • /
    • 2011
  • 공간적, 시간적으로 퍼져나가는 전염성이 강한 질병인 수두자료를 이용하여 공간 시계열 자료를 분석하는데 있어 일반적으로 알려진 ARIMA 모형에 적합하여 분석을 행하면 공간적인 정보를 반영하지 못하기 때문에 기존에 시간만을 고려한 시계열 분석방법에 공간통계의 공간적 정보를 반영한 공간시계열 모형을 고려한다. 공간시계열 모형에서 공간의 위치 및 영향은 시계열 모형에 공간적 정보로써 가중치행렬을 더 함으로써 처리 가능해진다. 가중치행렬은 지리적으로 인접한 지역일수록 공간의존도가 높다는 것을 반영한 것이며 공간시계열 모형의 연구에서 가중치행렬은 인접한 지역들은 동일한 영향을 줄 것이라 가정하였다. 따라서 본 논문에서는 공간시계열 모형인 STARMA 모형과 STBL 모형에 대한 식별방법, 통계적 추론 및 예측력 비교에 대해 연구하였고 특히, 모수추정의 알고리즘 비교와 공간시계열 모형의 예측력 비교를 통해 Kalman-Filter 방법의 우수성을 보이고자 한다.

여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측 (Prediction for spatial time series models with several weight matrices)

  • 이성덕;주수인;이소현
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.11-20
    • /
    • 2017
  • 시간의 변화뿐만 아니라 공간 위치의 변화를 함께 고려한 자료를 공간 시계열 자료라고 한다. 공간 시계열 자기회귀 이동평균 모형과 공간 시계열 중선형 모형에 대해 소개하고 각각의 Kalman Filter 방법에 의한 모수 추정의 과정을 거쳐 최종 선택된 모형의 예측력을 비교하였다. 또한 공간 시계열 자료의 모형에 포함되는 가중행렬에 대하여 기존의 방법인 동일한 가중치와 더불어 거리에 비례한 가중치와 인구수에 비례한 가중치를 제안하였다. 실증분석을 위해 한국질병관리본부에서 수집한 유행성 이하 선염 자료를 활용하여 가중치를 달리한 공간 시계열 모형을 적합시키고 예측하였다. 예측 오차 제곱합을 활용하여 어느 모형이 가장 효과적인 모형인지 판정하였다.

Bayes Inference for the Spatial Bilinear Time Series Model with Application to Epidemic Data

  • Lee, Sung-Duck;Kim, Duk-Ki
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.641-650
    • /
    • 2012
  • Spatial time series data can be viewed as a set of time series simultaneously collected at a number of spatial locations. This paper studies Bayesian inferences in a spatial time bilinear model with a Gibbs sampling algorithm to overcome problems in the numerical analysis techniques of a spatial time series model. For illustration, the data set of mumps cases reported from the Korea Center for Disease Control and Prevention monthly over the years 2001~2009 are selected for analysis.

공간시계열모형에 대한 베이즈 추론 (Bayes Inference for the Spatial Time Series Model)

  • 이성덕;김인규;김덕기;정애란
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.31-40
    • /
    • 2009
  • 공간시계열모형은 공간의 위치와 시간의 흐름에 따라 동시에 관측되는 분야인 기상, 지질, 천문, 생태, 역학 등에서 넓이 사용되고 있는 매우 복잡한 모형이다. 본 논문은 공간시계열모형에 대한 모수 추정에 있어서 기존의 최대우도추정 방법이 가지는 컴퓨팅의 문제를 해결하기 위하여 모수에 대한 사전정보와 자료의 정보를 모두 이용하는 깁스샘플링과 같은 MCMC 방법으로 모수를 추정하고, 실제 적용사례분석으로 여러 가지 측도를 구해서 추정된 모수에 대한 수렴진단을 수행하였다.