• Title/Summary/Keyword: STAND DENSITY

Search Result 281, Processing Time 0.022 seconds

Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand (인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

Analysis of Forest Stand Structure Using Spaceborne Synthetic Aperture Radar(SAR) Data (인공위성 레이다 영상자료를 이용한 임분구조의 물리적 특성파악)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.2
    • /
    • pp.79-91
    • /
    • 1992
  • With recent development in spaceborne imaging radar system, there are growing interests using satellite synthetic aperture radar(SAR) data in various applications. This study attempted to identify the relationships between several forest stand characteristics and radar backscatter, measured from space altitude altitude at three incidence angles. Shuttle Imaging Radar-B(SIR-B) data were collected over a forested area in northern Florida in October, 1984. By using various sources of reference data (forest type maps, inventory records, aerial photographs, and Landsat Thematic Mapper data), about 400 forest stands of known characteristics were carefully located in the radar data. Relative radar backscatter for the three incidence angles of SIR-B data were compared with known forest stand parameters such as mean tree height, diameter at breast height(DBH), stand density, biomass, and relative amount of understory vegetation. The results show that these stand parameters have statistically significant correlations with the radar backscatter. In addition, the SIR-B radar backscatter from a certain stand parameter turned out differently at the three different incidence angles. Finally, the types and characteristics of currently available satellite SAR data are discussed.

Soil properties of cultivation sites for mountain-cultivated ginseng at local level

  • Kim, Choonsig;Choo, Gap Chul;Cho, Hyun Seo;Lim, Jong Teak
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.76-80
    • /
    • 2015
  • Background: Identifying suitable site for growing mountain-cultivated ginseng is a concern for ginseng producers. This study was conducted to evaluate the soil properties of cultivation sites for mountain-cultivated ginseng in Hamyang-gun, which is one of the most well-known areas for mountain-cultivated ginseng in Korea. Methods: The sampling plots from 30 sites were randomly selected on or near the center of the ginseng growing sites in July and August 2009. Soil samples for the soil properties analysis were collected from the top 20 cm at five randomly selected points. Results: Mountain-cultivated ginseng was grown in soils that varied greatly in soil properties on coniferous, mixed, and deciduous broad-leaved stand sites of elevations between > 200mand < 1,000 m. The soil bulk density was higher in Pinus densiflora than in Larix leptolepis stand sites and higher in the < 700-m sites than in > 700-m sites. Soil pH was unaffected by the type of stand sites (pH 4.35-4.55), whereas the high-elevation sites of > 700mwere strongly acidified, with pH 4.19. The organic carbon and total nitrogen content were lower in the P. densiflora stand sites than in the deciduous broad-leaved stand sites. Available phosphorus was low in all of the stand sites. The exchangeable cationwas generally higher in the mixed and low-elevation sites than in the P. densiflora and high-elevation sites, respectively. Conclusion: These results indicate that mountain-cultivated ginseng in Korea is able to grow in very acidic, nutrient-depleted forest soils.

Quantifying Litterfall Input from the Stand Parameters of Korean Red Pine (Pinus densiflora S. et Z.) Stands in Gyeongnam Province

  • Kim, Choonsig;Baek, Gyeongwon;Choi, Byeonggil;Baek, Gyeongrin;Kim, Hojin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.569-576
    • /
    • 2021
  • This study developed an estimation model for litterfall input using the stand parameters (basal area, stand density, mean DBH, and carbon stocks of the aboveground tree biomass) collected from the Korean red pine (Pinus densiflora S. et Z.) stands of seven regions in Gyeongsangnam-do. The mean annual litterfall was 2,779 kg ha-1 year-1 for needles, 883 kg ha-1 year-1 for miscellaneous, 611 kg ha-1 year-1 for broadleaved, 513 kg ha-1 year-1 for branches, and 340 kg ha-1 year-1 for bark litter. The mean annual total litterfall was 5,051 kg ha-1 year-1. Litterfall components were significantly correlated with stand parameters, except for broadleaved litter. A stronger correlation was observed between the carbon stock of the aboveground tree biomass and all the litterfall components compared with the other stand variables. The allometric equations for all the litterfall components were significant (P < 0.05), with the stand parameters accounting for 5%-43% and 8%-42% of the variation in the needle litter and total litterfall, respectively. The results indicated that the annual litterfall inputs of the Korean red pine stands on a regional scale can be effectively estimated by allometric equations using the basal area and carbon stocks of the aboveground tree biomass.

Stand Conditions Influencing the Infection of the Korean Pine Blister Rust Caused by Cronartium ribicola (잣나무털녹병 발생에 영향하는 임지환경요인)

  • Kim Hyun Joong;Yi Chang Keun;Sung Jae Mo
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.277-284
    • /
    • 1987
  • Infection rate of the blister rust was investigated with special reference to the effect of eight stand factors at 221 plots selected from 131 Korean pine(Pinus koraiensis S. et Z,) stands, and the data were analyzed by multivariated statistical analysis. Environmental factors such as the density of Pedicularis spp., alternate hosts of the Korean pine blister rust, altitude, stand age, aspect, and pruning treatment, from the highest to the lowest were found to be related to the occurrence of the rust disease, Density of Pedicularis spp, was the most closely related to the' infection rate than any other factors, Especially, Pedicularis spp. growing naturally inside the pine stand had an important effect on the infection rate, but those on the outside more than 100m away had little effects, The higher the elevation, the heavier the infection rate. Infection was the heaviest at the altitudes of above 1,000m with high relative humidity and cool temperature. Infection rate was severe in young stands below 10 years old and had a reducing tendency as they mature. Stands above 16 years old were more resistant. The infection rate by the aspect of stand was higher at E- NE and W -SW exposures than at S-SE and N -NW. The infection rate at non-pruning stands was higher than at pruning stands with the lowest branch being at least 60cm high from the ground.

  • PDF

Ecological Characteristic of Abies koreana Stand Structure of Mt. Jirisan and Mt. Hallasan (지리산과 한라산의 구상나무 임분 구조의 생태적 특성)

  • Song, Ju Hyeon;Han, Sang Hak;Lee, Sang Hun;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.590-600
    • /
    • 2021
  • This study compared the stand structure of Abies koreana forests between Mt. Jirisan and Mt. Hallasan by analyzing DBH distribution, stem vitality, crown structure, importance value, species diversity, and DCA. The data were acquired through the national long-term ecological research project conducted by the Ministry of Environment. In the comparison of DBH class distribution, the stem density of A. koreana with DBH < 20 cm was higher in Mt. Hallasan than that in Mt. Jirisan; however, the stem density of A. koreana with DBH > 20 cm was higher in Mt. Jirisan than that in Mt. Hallasan. For A. koreana stem vitality, the ratio of alive standing was higher in Mt. Jirisan (72.0%) than in Mt. Hallasan (60.7%), whereas the ratio of alive leaning was higher in Mt. Hallasan (10.2%) than in Mt. Jirisan (1.1%). A. koreana stand in Mt. Jirisan was a mature stand with four evenly developed and distinct layers, whereas the tree layer in Mt. Hallasan was less than 10 m and the stand had three layers without a subtree layer. Mt. Hallasan's importance value of A. koreana was 39.4% higher than Mt. Jirisan's importance value of 26.6%. The species diversity of the A. koreana community of Mt. Jirisan was 2.52 times higher than that of Mt. Hallasan, which was 1.58. DCA results revealed that the average distance between Mt. Jirisan and Mt. Hallasan was relatively distinguished, and the degree of scattering of species composition of Mt. Jirisan was relatively dense compared with that of Mt. Hallasan.

Carbon Storage of Natural Pine and Oak Pure and Mixed Forests in Hoengseong, Kangwon (횡성지역 천연 소나무와 참나무류 순림 및 혼효임분의 탄소 저장량 추정)

  • Lee, Sue Kyoung;Son, Yowhan;Noh, Nam Jin;Heo, Su Jin;Yoon, Tae Kyung;Lee, Ah Reum;Sarah, Abdul Razak;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.772-779
    • /
    • 2009
  • This study was conducted to estimate the carbon (C) contents in pure and mixed stands of pine (Pinus densiflora) and oak (Quercus spp.) trees for establishing the C inventory of forest ecosystems. A total of fifteen 20 m${\times}$20 m pure and mixed stands of pine and oak trees were chosen in natural forests in Hoengseong, Kangwon based on the basal area of all trees ${\geq}$ 5 cm DBH: three of 95% of pine and 5% oak trees [pine stand], three of 100% of oak trees [oak stand], and nine of 20 to 70% of pine and 80 to 30% of oak trees [mixed stand]. To estimate C contents in the study stands, biomass in vegetation, forest floor and coarse woody debris (CWD) were calculated and C concentrations in vegetation, forest floor, CWD and soil (0-30 cm) were analyzed. There was no significant difference in vegetation C contents among the stands; 147.6 Mg C/ha for the oak stand, 141.4 Mg C/ha for the pine stand and 115.8 Mg C/ha for the mixed stand. Forest floor C contents were significantly different among the stands (p<0.05); 12.7 Mg/ha for the pine stand, 9.9 Mg/ha for the oak stand, and 8.4 Mg/ha for the mixed stand. However, CWD C contents were not significantly different among the stands (p>0.05); 2.2 Mg/ha for the mixed stand, 1.7 Mg/ha for the oak stand, and 1.1 Mg/ha for the pine stand. Soil C contents up to 30 cm depth were not significantly different among the study stands; 44.4 Mg C/ha for the pine stand, 41.6 Mg C/ha for the mixed stand, and 33.3 Mg C/ha for the oak stand. Total ecosystem C contents were lower in the mixed stand than those in the pure stands, because vegetation C contents which occupied almost total ecosystem C contents were lower in the mixed stand than those in the pure stands; 199.6 Mg C/ha for the pine stand, 192.5 Mg C/ha for the oak stand and 169.1 Mg C/ha for the mixed stand. Lower vegetation C contents in the mixed stand might be influenced by interspecific competition between pine and oak trees and intraspecific competition among the oak trees resulted from high stand density. We suggest that forest management such as thinning to enhance C storage is indispensible for minimizing the competition in forest ecosystems.

Growth, Biomass and Net Production of Quercus Species (I) - With Reference to Natural Stands of Quercus variabilis, Q. acutissima, Q. dentata, and Q. mongolica in Kwangju, Kyonggi-Do - (참나무류의 성장(成長) 및 물질생산(物質生産)에 관한 연구(硏究)(I) - 경기도(京畿道) 광주지방(廣州地方)의 굴참나무, 상수리나무, 떡갈나무, 신갈나무 천연임분(天然林分)을 대상으로 -)

  • Park, In Hyeop;Lee, Dong Koo;Lee, Kyung Joon;Moon, Gwang Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.76-83
    • /
    • 1996
  • Four natural Quercus stands in Kwangju, Kyonggi-Do, of which ages ranging from 32 to 38 years old, were studied to compare their growth, biomass and net production. Ten $10m{\times}10m$ quadrats were set up and ten sample trees were harvested for dimension analysis in each stand. The largest mean DBH and height were shown by Q. acutissima stand, and followed by Q. variabilis stand, Q. mongolica stand, and Q. dentata stand in descending order. Tree density was the highest at Q. variabilis stand, and followed by Q. dentata stand, Q. mongolica stand, and Q. acutissima stand in descending order. Biomass was the largest at Q. acutissima stand(122.73t/ha), and followed by Q. variabilis stand(87.03t/ha), Q. mongolica stand(72.14t/ha), and Q. dentata stand(38.56t/ha) in descending order. Net production was the greatest at Q. mongolica stand(7.49t/ha/yr.), and followed by Q. variabilis stand(6.47t/ha/yr.), Q. acutissima stand(6.06t/ha/yr.), and Q. dentata stand(3.52t/ha/yr.) in descending order. The highest net assimilation ratio was exhibited by Q. acutissima stand (3.275), and followed by Q. variabilis stand(2.898), Q. mongolica stand(2.888), and Q. dentata stand (1.840) in descending order. The difference in net assimilation ratio and net production among four stands was caused by differences in their leaf biomass. The difference in net production and biomass among four stands was due to that in the distribution of net production among stems, branches and leaves.

  • PDF

Differences in Population Density of 3 Rodent Species Between Natural Restored and Red Pine Silvicultured Forests after Forest fire (산불피해 후 자연복원과 소나무 조림을 실시한 지역에서 설치류 3종의 개체군 밀도 차이)

  • Lee, Eun-Jae;Son, Seung-Hun;Lee, Woo-Shin;Eo, Soo-Hyung;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.553-558
    • /
    • 2010
  • This study was conducted to clarify the differences in rodents population densities between natural restored and red pine silvicultured forests after forest fire in Samcheok, Gangwon Province, Korea from March to December 2008. One ha size of 3 study plots were set up in each natural restored and silvicultured stand. We trapped the small rodents during 4 consecutive nights every 2 months in each stand. Understory coverage and number of shrub stems were higher in silvicultured stand than in natural restored stand. Coverage of overstory, suboverstory and midstory, number of tree stem, woody seedling stems and dead wood, and amount of coarse woody debris were higher in natural restored stand than in silvicultured stand. Six hundred eighty eight individuals of four species, such as Apodemus agrarius, A. peninsulae, Eothenomys regulus and Tamias sibiricus were captured in our study. Number of captured small rodents were higher in natural restored stand than in silvicultured stand. Also, species compositions were differed in both stands. The captured number of A. agrarius and A. peninsulae were most highest in April and December. E. regulus were shown higher number of captured in April and June, and T. sibiricus were in June and October. Removal of coarse woody debris and silvicultural practice would not be good for the inhabitation of small rodents. For the conservation of small rodents diversity, management of understory and canopy would be needed in forest fired area.

A Study on the Production Structure and Biomass Productivity of Quercus variabilis Natural Forest (굴참나무천연림(天然林)의 생산구조(生産構造) 및 물질생산력(物質生産力)에 관(關)한 연구(硏究))

  • Kim, Si Kyung;Jeong, Jwa Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.91-102
    • /
    • 1985
  • Growth and biomass production of natural stands of Quercus variabilis in relation to tree density were studied to obtain basic guide lines for future tending operation. Two natural stands of Quercus variabilis located at 900m (A stand: 6,600trees/ha, $15.84m^2/ha$, $\frac{19}{17-20}$) and 800m (B stand: 4,300trees/ha, $16.65m^2/ha$, $\frac{20}{17-21}$) elevation in Sancheong, Kyongnam Province were selected for the comparative study and following results were obtained through a sample plot method. After diameter of individual trees in the sample plots was measured, twelve average trees from each diameter class were cut felled to measure dry weight of $W_S$, $W_B$, $W_L$, $W_{Ba}$, and standing biomass and biomass production rates by a allometrior regressions related to $D^2H$. Vertical distribution of leaves along the stems indicated that photosynthesis was carried out 2.2m above the ground in Stand A and 1.2m in Stand B. Maximum photosynthesis was located 4.2m and 6.2m above the ground in Stand A and B, respectively. Leaf area index was 4.25ha/ha for Stand A, and 3.89ha/ha for Stand B. Above-ground standing biomass was 49.51 ton/ha for Stand A and 59.20 ton/ha and net annual production was 6.75 ton/ha/yr. for Stand A and 8.99 ton/ha/yr. for Stand B. The ratio of net annual production to standing biomass was 17.5% for Stand A and 16.7% for Stand B. Net assimilation rate was 2.75kg/kg/yr. for Stand A and 3.58kg/kg/yr. for Stand B. Stem wood production rate was 1.46kg/kg/yr. for Stand A and 2.09kg/kg/yr. for Stand B. Bark production rate was 0.60 kg/kg/yr. for Stand A and 0.34kg/kg/yr. for Stand B. Above data indicated that Stand B utilized growing spaces and sites more efficiently than Stand A. It is concluded chat productivity of natural stands of Quercus variabilis can be enhanced through optimization of basal areas and number of tree per hectare and that sound management of natural oak stands should be based on systematic sampling of the area for periodic productivity estimation.

  • PDF