Carbon Storage of Natural Pine and Oak Pure and Mixed Forests in Hoengseong, Kangwon

횡성지역 천연 소나무와 참나무류 순림 및 혼효임분의 탄소 저장량 추정

  • Lee, Sue Kyoung (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Noh, Nam Jin (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Heo, Su Jin (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yoon, Tae Kyung (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Ah Reum (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University) ;
  • Sarah, Abdul Razak (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo Kyun (Division of Environmental Science and Ecological Engineering, Korea University)
  • 이수경 (고려대학교 환경생태공학부) ;
  • 손요환 (고려대학교 환경생태공학부) ;
  • 노남진 (고려대학교 환경생태공학부) ;
  • 허수진 (고려대학교 환경생태공학부) ;
  • 윤태경 (고려대학교 환경생태공학부) ;
  • 이아름 (고려대학교 기후환경학과) ;
  • ;
  • 이우균 (고려대학교 환경생태공학부)
  • Received : 2009.10.26
  • Accepted : 2009.11.02
  • Published : 2009.12.31

Abstract

This study was conducted to estimate the carbon (C) contents in pure and mixed stands of pine (Pinus densiflora) and oak (Quercus spp.) trees for establishing the C inventory of forest ecosystems. A total of fifteen 20 m${\times}$20 m pure and mixed stands of pine and oak trees were chosen in natural forests in Hoengseong, Kangwon based on the basal area of all trees ${\geq}$ 5 cm DBH: three of 95% of pine and 5% oak trees [pine stand], three of 100% of oak trees [oak stand], and nine of 20 to 70% of pine and 80 to 30% of oak trees [mixed stand]. To estimate C contents in the study stands, biomass in vegetation, forest floor and coarse woody debris (CWD) were calculated and C concentrations in vegetation, forest floor, CWD and soil (0-30 cm) were analyzed. There was no significant difference in vegetation C contents among the stands; 147.6 Mg C/ha for the oak stand, 141.4 Mg C/ha for the pine stand and 115.8 Mg C/ha for the mixed stand. Forest floor C contents were significantly different among the stands (p<0.05); 12.7 Mg/ha for the pine stand, 9.9 Mg/ha for the oak stand, and 8.4 Mg/ha for the mixed stand. However, CWD C contents were not significantly different among the stands (p>0.05); 2.2 Mg/ha for the mixed stand, 1.7 Mg/ha for the oak stand, and 1.1 Mg/ha for the pine stand. Soil C contents up to 30 cm depth were not significantly different among the study stands; 44.4 Mg C/ha for the pine stand, 41.6 Mg C/ha for the mixed stand, and 33.3 Mg C/ha for the oak stand. Total ecosystem C contents were lower in the mixed stand than those in the pure stands, because vegetation C contents which occupied almost total ecosystem C contents were lower in the mixed stand than those in the pure stands; 199.6 Mg C/ha for the pine stand, 192.5 Mg C/ha for the oak stand and 169.1 Mg C/ha for the mixed stand. Lower vegetation C contents in the mixed stand might be influenced by interspecific competition between pine and oak trees and intraspecific competition among the oak trees resulted from high stand density. We suggest that forest management such as thinning to enhance C storage is indispensible for minimizing the competition in forest ecosystems.

산림 생태계 내 탄소 수지에 관한 기초자료를 확보하기 위해 소나무와 참나무류의 순림 및 이들의 혼효임분에 대한 탄소 저장량을 추정하였다. 연구대상지는 강원도 횡성군 둔내면 일대로 임분별로 흉고직경 5 cm 이상 임목에 대한 흉고단면적($m^2/ha$)을 기준으로 소나무:참나무류의 비율이 95:5인 소나무 순림과 0:100인 참나무류 순림, 그리고 20:80-70:30인 혼효림을 선정하였다. 각각의 임분 내 식생, 낙엽층, 고사목의 생체량과 탄소 농도를 분석하고, 0-30 cm 깊이까지의 토양 탄소 농도를 분석하였다. 식생(상층 임목과 하층 식생)의 탄소 저장량은 참나무류 순림에서 147.6 Mg C/ha, 소나무 순림에서 141.4 Mg C/ha, 혼효림에서 115.8 Mg C/ha 등으로 통계적으로 유의한 차이는 없었다. 낙엽층 내 탄소 저장량은 소나무 순림에서 12.7 Mg C/ha, 참나무류 순림에서 9.9 Mg C/ha와 혼효림에서 8.4 Mg C/ha 등이었으며, 고사목 내 탄소 저장량은 혼효림에서 2.2 Mg/ha, 참나무류 순림에서 1.7 Mg/ha 와 소나무 순림에서 1.1 Mg/ha 등으로 낙엽층의 탄소량은 임분간 유의한 차이가 있었으나(p<0.05), 고사목의 탄소 저장량은 임분간 유의한 차이가 없었다(p>0.05). 지표로부터 30 cm 깊이까지의 토양 탄소 저장량은 소나무 순림에서 44.4 Mg C/ha이고, 혼효림에서 41.6 Mg C/ha과 참나무류 순림에서 33.3 Mg C/ha 등의 분포를 보였으나 임분간 유의한 차이는 없었다. 생태계 내 총 탄소 저장량은 소나무 순림에서 199.6 Mg C/ha, 참나무류 순림에서 192.5 Mg C/ha, 혼효림에서 169.1 Mg C/ha 등으로 임분별로 통계적으로 유의한 차이는 없었다. 탄소 저장량이 혼효림에서 순림보다 낮은 것은 탄소 저장량의 대부분을 차지하는 식생의 탄소 저장량이 혼효림에서 더 낮기 때문이었다. 혼효림의 식생은 소나무와 참나무류의 종간경쟁으로 참나무류의 직경생장이 둔화되고 임분 밀도가 높아 참나무류 임목간의 경쟁이 심하게 되어 순림보다 낮은 생체량을 보이는 것으로 추정된다. 혼효임분에서 탄소 저장량을 증가시키기 위해서는 간벌과 같은 적절한 임분관리를 통한 임분의 종내 및 종간경쟁을 완화시킬 필요가 있는 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단,한국과학재단,국토해양부

References

  1. 기상청. 2009. http://www.kma.go.kr/
  2. 국립산림과학원. 2009. 재적.중량표 및 임분수확표. 산림청
  3. 국립산림과학원. 2007. 산림 바이오매스 및 토양탄소 조사.분석 표준. 국립산림과학원
  4. 박관수, 이승우. 2001. 공주, 포항, 그리고 양양 지역 굴 참나무 천연림 생태계의 물질생산에 관한 연구. 한국임학회지 90(6): 692-698
  5. 박인협, 김준선. 1989. 한국산 4개 지역형 소나무천연림의 물질 현존량 추정식에 관한 연구. 한국임학회지 78(3): 323-330
  6. 박인협, 김동엽, 이명종, 진현오, 손요환, 서영권. 2003. 강원도 춘천지역 신갈나무 임분과 굴참나무 임분의 물질생산. 한국임학회지 92(1): 52-57
  7. 박인협, 문광선. 1999. 전남 모후산지역 소나무-굴참나무 혼효림의 종간경쟁 및 물질생산. 한국임학회지 88(4): 462-468
  8. 박인협, 이석면. 1990. 한국산 4개 지역형 소나무 천연림의 물질생산에 관한 연구. 한국임학회지 79(2): 196-204
  9. 산림청. 2008. 임업통계연보
  10. 손요환, 김동엽, 박인협, 이명종, 진현오. 2007. 한국 참나무림의 물질 생산과 양분 순환: 신갈나무림과 굴참나무림의 연구 사례. 강원대학교 출판부. p 240
  11. 이종락, 정동준. 1998. 소나무-굴참나무 천연 혼효임분 구조에 관한 연구. 경희대학교 자연과학 논문집 4: 61-66
  12. 황재홍, 손요환, 김종성. 2001. 개량된 토양 코어 시료 채취기. 한국임학회지 90(6): 788-791
  13. Alaback, P.B. 1982. Dynamics of understory biomass in sitka spruce-western hemlock forests of southeast Alaska. Ecology 63(6): 1932-1948 https://doi.org/10.2307/1940131
  14. Brown, A.H.F. 1992. Functioning of mixed-species stands at Bisburn, N.W. England. pp. 125-150, In M.G.R., Connell, D.C., Malcolm and P.A., Robertson (eds). The Ecology of Mixed-Species Stands of Trees. Blackwell, London
  15. IPCC. 2001. Climate Change 2001: Mitigation. http://www.grida.no/climate/ipcc_tar/wg3/pdf/TAR-total.pdf
  16. Jeon, I.Y., Shin, C.H., Kim, G.H. and Mun, H.T. 2007. Organic carbon distribution of the Pinus densiflora forest on Songgye valley at Mt. Worak national park. Journal of Ecology and Field Biology 31(1): 17-21
  17. Jeong, N., Han, A.R. and Mun, H.T. 2008. Weight loss and nutrient dynamics during leaf litther decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak national park. Journal of Ecology and Field Biology 31(4): 291-295 https://doi.org/10.5141/JEFB.2008.31.4.291
  18. Jose, S., Williams, R. and Zamora, D. 2006. Belowground ecological interactions in mixed-species forest plantations. Forest Ecology and Management 233: 231-239 https://doi.org/10.1016/j.foreco.2006.05.014
  19. Kelty, M.J. 2006. The role of species mixtures in plantation forestry. Forest Ecology and Management 233: 195-204 https://doi.org/10.1016/j.foreco.2006.05.011
  20. Kim, C. 2006. Soil carbon cycling and soil CO$_2$ efflux in a red pine (Pinus densiflora)stand. Journal of Ecology and Field Biology 29: 23-27
  21. Kim, C., Son, Y., Lee, W.K., Jeong, J. and Noh, N.J. 2009. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257: 1420-1426 https://doi.org/10.1016/j.foreco.2008.12.015
  22. Lee, P.C., Crites, S., Nietfield, M., Van Guyen, H. and Stelfox, J.B. 1997. Characteristics and origins of deadwood material in aspen-dominated boreal forests. Ecological Applications 7: 691-701 https://doi.org/10.1890/1051-0761(1997)007[0691:CAOODM]2.0.CO;2
  23. Lee, S.K., Son, Y., Noh, N.J., Yoon, T.K., Lee, A.R., Seo, K.W., Hwang, J.H. and Bae, S.W. 2009. Carbon storage of pure and mixed pine-deciduous oak forests in Gwangneung, central Korea. Journal of Ecology and Field Biology (in press)
  24. Li, X. and Han, S. 2008. Preservation of broadleaf species in Korean pine (Pinus koraiensis) plantations affects soil properties, carbon storage, biomass allocation, and available nitrogen storage. Canadian Journal of Forest Research 38: 2227-2235 https://doi.org/10.1139/X08-052
  25. McCarl, B.A. and Schneider, U.A. 2001. Greenhouse gas mitigation in U.S. agriculture and forestry. Science 294: 2481-2482 https://doi.org/10.1126/science.1064193
  26. Park, B.K. and Lee, I.S. 1981. A model for litter decomposition of the forest ecosystem in South Korea. Korean Journal of Ecology 4: 38-51 (in Korean with English summary)
  27. Park, G.S., Choi, J., Lee, K.H., Son, Y.M., Kim, R.H., Lee, H.G. and Lee, S.J. 2009. Carbon storage in aboveground, root and soil of Pinus densiflora stand in six different sites, Korea. Journal of Korean Environmental Restoration Technology 12(2): 1-9
  28. SAS Institute Inc. 2002. SAS/STAT User guide. Release 9.1. SAS Institute Inc. Cary, NC
  29. Siccama, T.G., Hamburg, S.P., Arthur, M.A., Yanai, R.D., Bormann, F.H. and Likens, G.E. 1994. Corrections to allometric equations and plant tissue chemistry for Hubbard Brook Experimental Forest. Ecology 75(1): 246-248 https://doi.org/10.2307/1939398
  30. Simard, S.W., Sachs, D.L., Vyse, A. and Blevins, L.L. 2004. Paperbirch competitive effects vary with conifer tree species and stand age in interior British Columbia forests: implications for reforestation policy and practice. Forest Ecology and Management 198: 55-74 https://doi.org/10.1016/j.foreco.2004.03.036
  31. Son, Y., Park, I.H., Yi, M.J., Jin, H.O., Kim, D.Y., Kim, R.H. and Hwang, J.O. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19: 21-28 https://doi.org/10.1111/j.1440-1703.2003.00617.x
  32. Spies, T. 1997. Forest Stand Structure, Composition, and Function. pp.11-23. In: A.K. Jerry and J.F. Franklin., ed. Creating a Forestry for the 21st Century: The Science of Ecosystem Management. New York Chapman and Hall. USA
  33. Wang, C.K. 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management 22: 9-16 https://doi.org/10.1016/j.foreco.2005.10.074
  34. Yoshida, T. and Kamitani, T. 2000. Interspecific compeitition among three canopy-tree species in a mixed-species even-aged forest of central Japan. Forest Ecology and Management 137: 221-230 https://doi.org/10.1016/S0378-1127(99)00330-8