• Title/Summary/Keyword: SSR markers

Search Result 295, Processing Time 0.018 seconds

Genetic Diversity and Identification of Korean Grapevine Cultivars using SSR Markers (SSR마커를 이용한 국내육성 포도 품종의 다양성과 품종 판별)

  • Cho, Kang-Hee;Bae, Kyung-Mi;Noh, Jung Ho;Shin, Il Sheob;Kim, Se Hee;Kim, Jeong-Hee;Kim, Dae-Hyun;Hwang, Hae-Sung
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • This study was conducted to investigate the genetic diversity and to develop a technique for cultivar identification using SSR markers in grapevine. Thirty Korean bred and introduced grapevine cultivars were evaluated by 28 SSR markers. A total of 143 alleles were produced ranging from 2 to 8 alleles with an average of 5.1 alleles per locus. Polymorphic information contents (PIC) were ranged from 0.666 (VVIp02) to 0.975 (VVIn33 and VVIn62) with an average of 0.882. UPGMA (unweighted pair-group method arithmetic average) clustering analysis based on genetic distances using 143 alleles classified 30 grapevine cultivars into 7 clusters by similarity index of 0.685. Similarity values among the tested grapevine cultivars ranged from 0.575 to 1.00, and the average similarity value was 0.661. The similarity index was the highest (1.00) between 'Jinok' and 'Campbell Early', and the lowest (0.575) between 'Alden' and 'Narsha'. The genetic relationships among the 30 studied grapevine cultivars were basically consistent with the known pedigree. The three SSR markers sets (VVIn61, VVIt60, and VVIu20) selected from 28 primers were differentiated all grapevine cultivars except for 'Jinok' and 'Campbell Early'. Five cultivars ('Narsha, 'Alden', 'Dutchess', 'Pione', and 'Muscat Hamburg') were identified by VVIn61 at the first step. Then 21 cultivars including 'Hongsodam' by VVIt60 at the second step and 2 cultivars ('Heukbosuck' and 'Suok') by VVIu20 at the third step were identified. These markers could be used as a reliable tool for the identification of Korean grapevine cultivars.

Morphological Characteristics and Genetic Diversity Analysis of Platycodon grandiflorum (Jacq.) A. DC Determined Using SSR Markers (도라지 수집종의 형태적 특성과 SSR마커에 의한 유연관계 분석)

  • Um, Yurry;Lee, Yi;Jin, Mei-Lan;Lee, Dae Young;Lee, Jae Won;Kim, Geum Soog;Kim, Chang Kug;Hong, Chang Pyo;Kim, Ok Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background : Plant breeding requires the collection of genetically diverse genetic resources. Studies on the characteristics of Platycodon grandiflorum resources have not been carried out so far. The present study was carried out to discriminate P. grandiflorum based on morphological characteristics and genetic diversity using simple sequence repeat (SSR) markers. Methods and Results :We collected 11 P. grandiflorum cultivars: Maries II, Hakone double white, Hakone double blue, Fuji white, Fuji pink, Fuji blue, Astra white, Astra pink, Astra blue, Astra semi-double blue and Jangbaek. Analyses of the morphological characteristics of the collection were conducted for aerial parts (flower, stem and leaf) and underground parts (root). Next, the genetic diversity of all P. grandiflorum resources was analyzed using SSR markers employing the DNA fragment analysis method. We determined that the 11 P. grandiflorum cultivars analyzed could be classified by plant length, leaf number and root characteristic. Based on the genetic diversity analysis, these cultivars were classified into four distinct groups. Conclusions : These findings could be used for further research on cultivar development using molecular breeding techniques and for conservation of the genetic diversity of P. grandiflorum. Moreover, the markers could be used for genetic mapping of the plant and marker-assisted selection for crop breeding.

Identification of DNA Variations Using AFLP and SSR Markers in Soybean Somaclonal Variants

  • Lee, Suk-Ha;Jung, Hyun-Soo;Kyujung Van;Kim, Moon-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • Somaclonal variation, defined as phenotypic and genetic variations among regenerated plants from a parental plant, could be caused by changes in chromosome structure, single gene mutation, cytoplasm genetic mutation, insertion of transposable elements, and DNA methylation during plant regeneration. The objective of this study was to evaluate DNA variations among somaclonal variants from the cotyledonary node culture in soybean. A total of 61 soybean somaclones including seven $\textrm{R}_1$ lines and seven $\textrm{R}_2$ lines from Iksannamulkong as well as 27 $\textrm{R}_1$ lines and 20 $\textrm{R}_2$ lines from Jinju 1 were regenerated by organogenesis from the soybean cotyledonary node culture system. Field evaluation revealed no phenotypic difference in major agronomic traits between somaclonal variants and their wild types. AFLP and SSR analyses were performed to detect variations at the DNA level among somaclonal variants of two varieties. Based on AFLP analysis using 36 primer sets, 17 of 892 bands were polymorphic between Iksannamulkong and its somaclonal variants and 11 of 887 bands were polymorphic between Jinju 1 and its somaclonal variants, indicating the presence of DNA sequence change during plant regeneration. Using 36 SSR markers, two polymorphic SSR markers were detected between Iksannamulkong and its somaclonal variants. Sequence comparison amplified with the primers flanking Satt545 showed four additional stretches of ATT repeat in the variant. This suggests that variation at the DNA level between somaclonal variants and their wild types could provide basis for inducing mutation via plant regeneration and broadening crop genetic diversity.

Reverse Random Amplified Microsatellite Polymorphism Reveals Enhanced Polymorphisms in the 3' End of Simple Sequence Repeats in the Pepper Genome

  • Min, Woong-Ki;Han, Jung-Heon;Kang, Won-Hee;Lee, Heung-Ryul;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.250-257
    • /
    • 2008
  • Microsatellites or simple sequence repeats (SSR) are widely distributed in eukaryotic genomes and are informative genetic markers. Despite many advantages of SSR markers such as a high degree of allelic polymorphisms, co-dominant inheritance, multi-allelism, and genome-wide coverage in various plant species, they also have shortcomings such as low polymorphic rates between genetically close lines, especially in Capsicum annuum. We developed an alternative technique to SSR by normalizing and alternating anchored primers in random amplified microsatellite polymorphisms (RAMP). This technique, designated reverse random amplified microsatellite polymorphism (rRAMP), allows the detection of nucleotide variation in the 3' region flanking an SSR using normalized anchored and random primer combinations. The reproducibility and frequency of polymorphic loci in rRAMP was vigorously enhanced by translocation of the 5' anchor of repeat sequences to the 3' end position and selective use of moderate arbitrary primers. In our study, the PCR banding pattern of rRAMP was highly dependent on the frequency of repeat motifs and primer combinations with random primers. Linkage analysis showed that rRAMP markers were well scattered on an intra-specific pepper map. Based on these results, we suggest that this technique is useful for studying genetic diversity, molecular fingerprinting, and rapidly constructing molecular maps for diverse plant species.

Development of Simple Sequence Repeat Markers from Adenophora triphylla var. japonica (Regel) H. Hara using Next Generation Sequencing (차세대염기서열분석법을 이용한 잔대의 SSR 마커 개발)

  • Park, Ki Chan;Kim, Young Guk;Hwangbo, Kyeong;Gil, Jinsu;Chung, Hee;Park, Sin Gi;Hong, Chang Pyo;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.411-417
    • /
    • 2017
  • Background: Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth with radical leaves during the first year and shows reproductive growth with cauline leaves and bolting during the second year. In addition, the shape of the plant varies within the same species. For this reason, there are limitations to classifying the species by visual examination. However, there is not sufficient genetic information or molecular tools to analyze the genetic diversity of the plant. Methods and Results: Approximately 34.59 Gbp of raw data containing 342,487,502 reads was obtained from next generation sequencing (NGS) and these reads were assembled into 357,211 scaffolds. A total of 84,106 simple sequence repeat (SSR) regions were identified and 14,133 primer sets were designed. From the designed primer sets, 95 were randomly selected and were applied to the genomic DNA which was extracted from five plants and pooled. Thirty-nine primer sets showing more than two bands were finally selected as SSR markers, and were used for the genetic relationship analysis. Conclusions: The 39 novel SSR markers developed in this study could be used for the genetic diversity analysis, variety identification, new variety development and molecular breeding of A. triphylla.

Development of SSR Markers and Their Use in Studying Genetic Diversity and Population of Finger Millet (Eleusine coracana L. Gaertn.)

  • Lee, Kyung Jun;Yoon, Mun-Sup;Shin, Myoung-Jae;Lee, Jung-Ro;Cho, Yang-Hee;Lee, Ho-Sun;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • Finger millet (Eleusine coracana L. Gaertn.) is an important cereal crop in eastern Africa and southern India with excellent grain storage capacity and the unique ability to thrive in extreme environmental conditions. In this study, we analyzed the genetic diversity and population structure of finger millet using 12 developed microsatellites. By sequencing 815 clones from an SSR-enriched genomic DNA library, we obtained 12 polymorphic SSR markers, which also revealed successful amplicons in finger millet accessions. Using the developed SSR markers, we estimated genetic diversity and population structure among 76 finger millet accessions in Asia, Africa, and unknown origins. The number of alleles ranged from 2 to 9, with an average of 3.3 alleles. The mean values of observed heterozygosity and expected heterozygosity were 0.27 and 0.35, respectively. The average polymorphism information content was 0.301 in all 76 finger millet accessions. AMOVA analysis showed that the percentage of molecular variance among the populations was 1%, that among individuals was 5%, and that within individuals was 94%. In STRUCTURE analysis, the 76 finger millet accessions were divided into two subpopulations which had an admixture of alleles. There was a correspondence among PCoA, AMOVA, and population structure. This study may form the basis for a finger millet breeding and improvement program.

Analysis of the Genetic Diversity of Radish Germplasm through SSR Markers Derived from Chinese Cabbage (배추 SSR 마커를 이용한 무의 육성 계통 및 수집종의 유전적 다양성 분석)

  • Park, Suhyoung;Choi, Su Ryun;Lee, Jung-Soo;Nguyen, Van Dan;Kim, Sunggil;Lim, Yong Pyo
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.457-466
    • /
    • 2013
  • Since the early 1980s, the National Institute of Horticultural & Herbal Sciences has been breeding and collecting diverse radish breeds to select those samples with better horticultural characteristics, to ultimately expand and develop as good radish produce. Genetic diversity is a crucial factor in crop improvement and therefore it is very important to obtain various variations through sample collection. The collected samples were compared with one another in order to assess the level of diversity among the collections, and this procedure allowed for increased application of the gathered resources and aided in determining the direction to secure further samples. Towards this end, this experiment was conducted in order to examine whether the SSR markers derived from Chinese cabbage samples could be transferred to the radish samples. Among the radish breeding lines and introduced resources, 44 lines were used as materials to analyze the genotype using 22 SSR markers selected. As a result, the analysis showed that among all the selected markers, 'cnu_m139' and 'cnu_m289' were the most useful markers for diversity evaluation. The genetic relationship of the radish genetic resources showed that the geographic origins affected the diversity. Furthermore, the different types of radish groups were also determined by the year they were bred. This result demonstrated that there are differences between the older radish breeds and the more recently developed radish breeds. Even though a relatively small number of markers were used in the analysis, it was possible to distinguish whether the radish was bred 30 years ago or in the 2000s, and that the similar physical shapes comprised a particular group, showed that the SSR markers can indeed be successfully applied to to study the diversity within radish breeding lines. Through the results of this study, it can be concluded that the SSR marker developed for the Chinese cabbage can be applied to examine the genetic diversity and analyze the relationship (genetic resource determination) of radish.

Molecular Characterization of 170 New gDNA-SSR Markers for Genetic Diversity in Button Mushroom (Agaricus bisporus)

  • An, Hyejin;Jo, Ick-Hyun;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik;Sung, Jwa-Kyung;So, Yoon-Sup;Chung, Jong-Wook
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.527-532
    • /
    • 2019
  • We designed 170 new simple sequence repeat (SSR) markers based on the whole-genome sequence data of button mushroom (Agaricus bisporus), and selected 121 polymorphic markers. A total of 121 polymorphic markers, the average major allele frequency (MAF) and the average number of alleles (NA) were 0.50 and 5.47, respectively. The average number of genotypes (NG), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were 6.177, 0.227, 0.619, and 0.569, respectively. Pearson's correlation coefficient showed that MAF was negatively correlated with NG (-0.683), NA (-0.600), HO (-0.584), and PIC (-0.941). NG, NA, HO, and PIC were positively correlated with other polymorphic parameters except for MAF. UPGMA clustering showed that 26 A. bisporus accessions were classified into 3 groups, and each accession was differentiated. The 121 SSR markers should facilitate the use of molecular markers in button mushroom breeding and genetic studies.

Assessment of Genetic Relationship among Date (Zizyphus jujuba) Cultivars Revealed by I-SSR Marker (I-SSR 표지자분석을 이용한 대추나무 품종간 유연관계 분석)

  • Nam, Jae-Ik;Kim, Young-Mi;Choi, Go-Eun;Lee, Gwi-Young;Park, Jae-In
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The jujube is an important fruit tree species in Korea. Traditionally, classifications of jujube cultivars have been based on morphological characters; however, morphological identification can be problematic because morphological traits are affected by environmental conditions. Therefore, DNA markers are now being used for the rapid and accurate identification of plant species. Inter-simple sequence repeat (I-SSR) is one of the best DNA-based molecular marker techniques, which is useful for studying genetic relations and for the identification of closely related cultivars. In this study, 5 Korean jujube trees and 1 jujube tree imported from China were analyzed for 16 I-SSR primers. Amplification of the genomic DNA of jujube cultivars by using I-SSR analysis generated 100 bands, with an average of 6.25 bands per primer, of which 45 bands (45%) were polymorphic. The number of amplified fragments with I-SSR primers ranged from 2 to 13. The percentage of polymorphism ranged from 10% to 100%. I-SSR finger printing profiles showed that 'Boeun jujube' and 'Daeri jujube' had characteristic DNA patterns, indicating unequivocal cultivar identification at molecular level. According to the results of clustering analysis, the genetic similarity coefficient ranged from 0.68 to 0.92. 'Boeun jujube' and 'Daeri jujube' were divided into independent groups, and 'Bokjo jujube', 'Geumseong jujube', 'Wolchul jujube', and 'Mudeung jujube' were placed in the same group. Therefore, I-SSR markers are suitable for the discrimination of 'Boeun jujube' and 'Daeri jujube' cultivars.

Genetics of Fusarium Wilt Resistance in Pigeonpea (Cajanus cajan) and Efficacy of Associated SSR Markers

  • Singh, Deepu;Sinha, B.;Rai, V.P.;Singh, M.N.;Singh, D.K.;Kumar, R.;Singh, A.K.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Inheritance of resistance to Fusarium wilt (FW) disease caused by Fusarium udum was investigated in pigeonpea using four different long duration FW resistant genotypes viz., BDN-2004-1, BDN-2001-9, BWR-133 and IPA-234. Based on the $F_2$ segregation pattern, FW resistance has been reported to be governed by one dominant gene in BDN-2004-1 and BDN-2001-9, two duplicate dominant genes in BWR-133 and two dominant complimentary genes in resistance source IPA-234. Further, the efficacy of six simple sequence repeat (SSR) markers namely, ASSR-1, ASSR-23, ASSR-148, ASSR-229, ASSR-363 and ASSR-366 reported to be associated with FW resistance were also tested and concluded that markers ASSR-1, ASSR-23, ASSR-148 will be used for screening of parental genotypes in pigeonpea FW resistance breeding programs. The information on genetics of FW resistance generated from this study would be used, to introgress FW resistance into susceptible but highly adopted cultivars through marker-assisted backcross breeding and in conventional breeding programs.