• Title/Summary/Keyword: SSR markers

Search Result 295, Processing Time 0.029 seconds

Assessment of Genetic Diversity and Fatty acid Composition of Perilla (Perilla frutescens var. frutescens) Germplasm

  • Song, Jae-Young;Lee, Jung-Ro;Oh, Sejong;Kim, Chang-Yung;Bae, Chang-Hyu;Lee, Gi-An;Ma, Kyung-Ho;Choi, Yu-Mi;Park, Hong-Jae;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.25 no.6
    • /
    • pp.762-772
    • /
    • 2012
  • The objective of this study was to analyze the genetic diversity using SSR marker and investigate the fatty acid composition of perilla (P. frutescens var. frutescens) germplasm. Genetic diversity among 95 accessions, which consisted of 29 weedy types and 66 landrace accessions, was evaluated based on 12 SSR markers carrying 91 alleles. The mean values of observed ($H_O$) and expected heterozygosities ($H_E$) were 0.574 and 0.640, respectively, indicating a considerable amount of polymorphism within this collection. A genetic distance-based phylogeny grouped into two distinct groups, which were the landrace, moderate and weedy type, genetic distance (GD) value was 0.609. The physicochemical traits about crude oil contents and fatty acid compositions were analyzed using GC. Among tested germplasm, the total average oil contents (%) showed a range from 28.57 to 49.67 %. Five fatty acids and their contents in the crude oils are as follows: ${\alpha}$-linolenic acid (41.12%-51.81%), linoleic acid (15.38%-16.43%), oleic acid (18.93%-27.28%), stearic acid (2.56%-4.01%), and palmitic acid (7.38%-10.77%). The average oil content of wild types was lower than landrace, and the oil content of middle genotype accessions was higher than other germplasm, but no significant variation between landrace and wild types was shown. Nevertheless, IT117174, landrace of Korea, was highest in crude oil content (47.11%) and linolenic acid composition (64.58%) among the used germplasm. These traits of the selected accessions will be helped for new functional plant breeding in perilla crop.

Identification of Quantitative Trait Loci (QTLs) Associated with Oil and Protein Contents in Soybean (Glycine max L.) (콩에서 Microsatellite marker률 이용한 oil 및 단백질 함량의 양적형질 유전자좌의 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.453-458
    • /
    • 2004
  • Soybean oil and protein contents are very important as a nutritional component of food. The seed composition as oil and protein are polygenic traits. In this study, the Keunolkong${\times}$Iksan10 populations were evaluated with SSR markers to identify QTLs related to oil and protein contents. Three related independent QTLs near the marker satt100 on LG C2, satt546 on LG D1b+W and satt418 on LG L were identified oil contents. The three independent QTLs near the marker satt556 on LG B2, satt414 on LG J and satt238 on LC L were identified of protein contents. In the results of this study, common QTLs on LG L was associated with seed oil and protein contents. In the result of this study, it is believed that the seed composition material as oil and protein contents were mainly controlled by environmental stresses and they are seed size on genotypes.

Breeding a new white button mushroom cultivar 'Hadam' to produce mushrooms at high temperature (고온성 백색 양송이 신품종 '하담' 육성)

  • Oh, Youn-Lee;Oh, Min Ji;Im, Ji-Hoon;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.214-220
    • /
    • 2020
  • We undertook a breeding program to produce a white button mushroom cultivar with high temperature tolerance in preparation for climate change. The results were as follows. The strains KMCC00540, KMCC00591, and KMCC00643 were selected, and homokaryons were selected and hybrids were identified with ISSR and SSR markers, respectively. The selected hybrids were cultivated in three repetitions at a temperature of 20-25 ℃ and a humidity of 80% or higher. The variation in agricultural traits and fruiting body characteristics was least in the Abs4-2016-121 strain. This line is a hybrid of KMCC00591 and KMCC00875, and field experiments at Gyeongju and Buyeo farms found that the Abs4-2016-121 line has high fruiting body with hardness and delayed opening of pileus at high temperatures, so it was bred as a high-temperature cultivar named 'Hadam'.

Mapping of the Reduced Culm Number Trait in Rice (Oryza sativa L.) rcn10(t) Mutant

  • Yeo, Un-Sang;Lee, Jong-Hee;Kim, Choon-Song;Jeon, Meong-Gi;Oh, Tae-Yong;Han, Chang-Deok;Shin, Mun-Sik;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • In rice, tillering is an important trait determining yield. To study tillering at the agricultural and molecular aspects, we have examined a spontaneous rice mutant that showed reduction in the number of culms. The mutant was derived from a $F^6$ line of the cross of Junambyeo*4 / IR72. It could produce, on average, 4 tillers per hill in the paddy field while wild-type plants usually have 15. Except the reduced culm numbers, they also show pale green phenotypes. The phenotypes of this mutant were co-segregated as the monogenic Mendelian ratio (${\chi}^b=0.002$, p=0.969). In order to locate a gene responsible for the rcn phenotype, the mutant with the japonica genetic background was crossed with Milyang21 of the indica background. Bulked segregant analysis was used for rapid determination of chromosomal location. Three SSR markers (RM551, RM8213, and RM16467) on chromosome 4 were genetically associated with the mutant phenotype. Each of the 217 $F_2$ plants was genotyped with simple sequence length polymorphisms. The data showed that RM16572 on chromosome 4 was the closest marker that showed perfect co-segregation among the $F_2$ population. We suggest the new rcn gene studied here name as $rcn10^t$ because there was no report which exhibit a rcn phenotype with a pleiotropic effect of pale green (chlorophyll deficiency), and mapped at same position on chromosome 4.

QTL Mapping of Agronomic Traits Using an Introgression Line Population Derived from an Intersubspecific Cross in Rice

  • Oh, Chang-Sik;Park, In-Kyu;Kim, Dong-Min;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.470-480
    • /
    • 2010
  • The objectives of this study were to identify QTLs for agronomic traits using introgression lines from a cross between a japonica weedy rice and a Tongil-type rice. A total of 75 introgression lines developed in the Tongil-type rice were characterized. A total of 368 introgressed segments including 285 homozygous and 83 heterozygous loci were detected on 12 chromosomes based on the genotypes of 136 SSR markers. Each of 75 introgression lines contained 0-9 homozygous and 0-8 heterozygous introgressed segments with an average of 5.8 segments per line. A total of 31 quantitative and 2 qualitative loci were identified for 14 agronomic traits and each QTL explained 4.1% to 76.6% of the phenotypic variance. Some QTLs were clustered in a few chromosomal regions. A first cluster was located near RM315 and RM472 on chromosome 1 with QTLs for 1,000 grain weight, culm length, grain width and thickness. Another cluster was detected with four QTLs for 1,000 grain weight, grain length, grain width and grain length/width ratio near the SSR marker RM249 on chromosome 5. Among the 31 QTLs, 9 (28.1%) Hapcheonaengmi3 alleles were beneficial in the Milyang23 background. ILs would be useful to confirm QTLs putatively detected in a primary mapping population for complex traits and serve as a starting point for map-based cloning of the QTLs. Additional backcrosses are being made to purify nearly isogenic lines (NILs) harboring a few favorable Hapcheonaengmi3 alleles in Milyang23 background.

Genotyping of avian pathogenic Escherichia coli by DNA fragment analysis for the differences in simple sequence repeats

  • Han, Mi Na;Byeon, Hyeon Seop;Han, Seong Tae;Jang, Rae Hoon;Kim, Chang Seop;Choi, Seok Hwa
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.257-262
    • /
    • 2018
  • Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry farms, due to systemic infections leading to lethal colisepticemia. It causes a variety of diseases from air sac infection to systemic spread leading to septicemia. Secondary infection contains opportunistic infections due to immunosuppression disease. Collibacillosis causes the great problems in the poultry industry in Korea. Thus, it is necessary to identify and classify the characteristics of E. coli isolate of chicken origin to confirm the diversity of symptoms and whether they are transmitted among the farms. Fragment analysis is identify the difference in the number of Variable-Number Tandem-Repeats (VNTRs) for genotyping. VNTRs have repeating structure (Microsatellite, Short tandem repeats; STR, Simple sequence repeats; SSR) in the chromosome. This region can be used as a genetic marker because of its high mutation rate. And various lengths of the amplified DNA fragment cause the difference in the number of repetition of the DNA specific site. The number of repetition sequences indicates the separated size of fragments, so the each fragments can be distinguished by specific samples. The results of the sample show that there is no difference in six microsatellite loci (yjiD, aidB, molR_1, ftsZ, b1668, yibA). There are differences among the farms in relation of the number of repetitions of other six microsatellite loci (ycgW, yaiN, yiaB, mhpR, b0829, caiF). Four (ycgW, yiaB, b0829, caiF) of these six microsatellite loci show statistically significant differences (P<0.05). It means that the analysis using four microsatellite loci including ycgW, yiaB, b0829, and caiF can confirm among the farms. Five E. coli samples in one farm have same SSR repetition at all markers. But, there are significant differences from other farms at Four (ycgW, yiaB, b0829, caiF) microsatellite loci. These results emphasize again that the four microsatellite loci makes a difference in the amplified DNA fragments, enabling it to be used for E. coli genotyping.

Genetic diversity analysis of tea (Camellia sinensis (L.) O. Kuntze) germplasm in Korea genebank

  • Hyeon, Do-Yun;Lee, Jeong-Ro;Jo, Gyu-Taek;Raveendar, Sebastin;Sin, Myeong-Jae;Lee, Gyeong-Jun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.63-63
    • /
    • 2019
  • Tea plant (Camellia sinensis (L.) O. Kuntze) has been cultivated widely in many developing Asian, African, and South American countries, where it is the most widely consumed beverage in the world next to water. It has critical importance to understand the genetic diversity and population sturcutre for effective collection, conservation, and utilization of tea germplasm. In this study, 410 tea accessions collected from South Korea were analyzed using 21 SSR markers. Among 410 tea accessions, 85.4% (310 accessions) accessions were collected from Jeollanam-do. A total of 286 alleles were observed, and the genetic diversity and evenness were estimated to be averagely 0.79 and 0.61, respectively, across all the tested samples. Using discriminant analysis of principal components, the four clusters were detected in 410 tea accessions. Among them, cluster 1 showed higher frequency of rare alleles (less than 1%) than other clusters. Using calculation of the index of association and rbaD value, each cluster showed a clonal mode of reproduction. The result of AMOVA showed that most of the variation observed was within populations (99%) rather than among populations (1%). Our results might contribute to provide data about genetic diversity for the conservation of tea germplasm and for future breeding programs.

  • PDF