• Title/Summary/Keyword: SSP Scenarios

Search Result 65, Processing Time 0.028 seconds

A Comparison of Predictive Power among SSP Scenarios of Oyster Aquaculture Production (SSP 시나리오별 굴 양식 생산량 예측력 비교)

  • Min-Gyeong Jeong;Jong-Oh Nam
    • The Journal of Fisheries Business Administration
    • /
    • v.54 no.1
    • /
    • pp.37-49
    • /
    • 2023
  • Climate change is a major global problem. Oysters, one of the most representative farmed fish in Korea, are attracting attention as candidates for blue carbon, an alternative to carbon neutrality. This study is analyzed by the SSP scenarios to determine the impact of oyster aquaculture production according to climate change. Based on the analysis, future productions of oysters are predicted by the SSP scenario. Significant differences by the SSP scenario are confirmed through predictive power tests among scenarios. Regression analysis was conducted from January 2001 to December 2014. As a result of the analysis, water temperature, water temperature quadratic term, salinity, salinity quadratic term, and month × water temperature cross term were estimated as significant variables. Oyster production which is predicted by the SSP scenario based on the significant variables from 2015 to 2022 was compared with actual production. The model with the highest predictive power was selected by RMSE and MAPE criteria. The predictive power was compared with the MDM test to determine which model was superior. As a result, based on RMSE and MAPE, the SSP1-2.6 scenario was selected as the best model and the SSP1-2.6, SSP2-4.5, and SSP3-7.0 scenarios all showed the same predictive power based on the MDM test. In conculusion, this study predicted oyster aquaculture production by 2030, not the distant future, due to the short duration of the analytical model. This study was found that oyster aquaculture production increased in all scenarios and there was no significant difference in predictive power by the SSP scenario.

Uncertainty of future runoff projection according to SSP scenarios and hydrologic model parameters (미래 기후변화 시나리오와 수문모형 매개변수에 따른 미래 유량예측 불확실성)

  • Kim, Jin Hyuck;Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Future runoff analysis is influenced by climate change scenarios and hydrologic model parameters, with uncertainties. In this study, the uncertainty of future runoff analysis according to the shared socioeconomic pathway (SSP) scenario and hydrologic model parameters was analyzed. Among the SSP scenarios, the SSP2-4.5 and SSP5-8.5 scenarios were used, and the soil and water assessment tool (SWAT) model was used as the hydrologic model. For the parameters of the SWAT model, a total of 11 parameter were optimized to the observed runoff data using SWAT-CUP. Then, uncertainty analysis of future estimated runoff compared to the observed runoff was performed using jensen-shannon divergence (JS-D), which can calculate the difference in distribution. As a result, uncertainty of future runoff was analyzed to be larger in SSP5-8.5 than in SSP2-4.5, and larger in the far future (2061-2100) than in the near future (2021-2060). In this study, the uncertainty of future runoff using future climate data according to the parameters of the hydrologic model is as follows. Uncertainty was greatly analyzed when parameters used observed runoff data in years with low flow rates compared to average years. In addition, the uncertainty of future runoff estimation was analyzed to be greater for the parameters of the period in which the change in runoff compared to the average year was greater.

The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios (SSP 시나리오에 따른 기후변화가 다목적댐 수력발전량에 미치는 영향 분석)

  • Wang, Sizhe;Kim, Jiyoung;Kim, Yongchan;Kim, Dongkyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.481-491
    • /
    • 2024
  • Recent droughts make hydroelectric power generation (HPG) decreasing. Due to climate change in the future, the frequency and intensity of drought are expected to increase, which will increase uncertainty of HPG in multi-purpose dams. Therefore, it is necessary to estimate the amount of HPG according to climate change scenarios and analyze the effect of drought on the amount of HPG. This study analyzed the future HPG of the Soyanggang Dam and Chungju Dam according to the SSP2-4.5 and SSP5-8.5 scenarios. Regression equations for HPG were developed based on the observed data of power generation discharge and HPG in the past provided by My Water, and future HPGs were estimated according to the SSP scenarios. The effect of drought on the amount of HPG was investigated based on the drought severity calculated using the standardized precipitation index (SPI). In this study, the future SPIs were calculated using precipitation data based on four GCM models (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) provided through the environmental big data platform. Overall results show that climate change had significant effects on the amount of HPG. In the case of Soyanggang Dam, the amount of HPG decreased in the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario the CanESM model showed a 65% reduction in 2031, and under the SSP5-8.5 scenario the ACCESS-ESM1-5 model showed a 54% reduction in 2029. In the case of Chungju Dam, under the SSP2-4.5 and SSP5-8.5 scenarios the average monthly HPG compared to the reference period showed a decreasing trend except for INM-CM4 model.

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1 (기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석)

  • YULHO LEE;SUNGJIN PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

Future Runoff Characteristics of Ganwol Estuary Reservoir Watershed Based on SSP Scenarios (SSP 기후변화 시나리오에 따른 간월호 유역의 미래 유출특성 변화)

  • Kim, Sinae;Kim, Donghee;Kim, Seokhyeon;Hwang, Soonho;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • The estuary reservoir is a major source of agricultural water in Korea; for effective and sustainable water resource management of the estuary reservoir, it is crucial to comprehensively consider various water resource factors, including water supply, flood, and pollutant management, and analyze future runoff changes in consideration of environmental changes such as climate change. The objective of this study is to estimate the impact of future climate change on the runoff characteristics of an estuary reservoir watershed. Climate data on future Shared Socioeconomic Pathway (SSP) scenarios were derived from two Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 6 (CMIP6). The Hydrological Simulation Program-Fortran (HSPF) was used to simulate past and future long-term runoff of the Ganwol estuary reservoir watershed. The findings showed that as the impact of climate change intensified, the average annual runoff in the future period was higher in the order of SSP5, SSP3, SSP1, and SSP2, and the ratio of runoff in July decreased while the ratio of runoff in October increased. Moreover, in terms of river flow regime, the SSP2 scenario was found to be the most advantageous and the SSP3 scenario was the most disadvantageous. The findings of this study can be used as basic data for developing sustainable water resource management plans and can be applied to estuary reservoir models to predict future environmental changes in estuary reservoirs.

Tree species migration to north and expansion in their habitat under future climate: an analysis of eight tree species Khyber Pakhtunkhwa, Pakistan

  • Muhammad Abdullah Durrani;Rohma Raza;Muhammad Shakil;Shakeel Sabir;Muhammad Danish
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.96-109
    • /
    • 2024
  • Background: Khyber Pakhtunkhwa government initiated the Billion Tree Tsunami Afforestation Project including regeneration and afforestation approaches. An effort was made to assess the distribution characteristics of afforested species under present and future climatic scenarios using ecological niche modelling. For sustainable forest management, landscape ecology can play a significant role. A significant change in the potential distribution of tree species is expected globally with changing climate. Ecological niche modeling provides the valuable information about the current and future distribution of species that can play crucial role in deciding the potential sites for afforestation which can be used by government institutes for afforestation programs. In this context, the potential distribution of 8 tree species, Cedrus deodara, Dalbergia sissoo, Juglans regia, Pinus wallichiana, Eucalyptus camaldulensis, Senegalia modesta, Populus ciliata, and Vachellia nilotica was modeled. Results: Maxent species distribution model was used to predict current and future distribution of tree species using bioclimatic variables along with soil type and elevation. Future climate scenarios, shared socio-economic pathways (SSP)2-4.5 and SSP5-8.5 were considered for the years 2041-2060 and 2081-2100. The model predicted high risk of decreasing potential distribution under SSP2-4.5 and SSP5-8.5 climate change scenarios for years 2041-2060 and 2081-2100, respectively. Recent afforestation conservation sites of these 8 tree species do not fall within their predicted potential habitat for SSP2-4.5 and SSP5-8.5 climate scenarios. Conclusions: Each tree species responded independently in terms of its potential habitat to future climatic conditions. Cedrus deodara and P. ciliata are predicted to migrate to higher altitude towards north in present and future climate scenarios. Habitat of D. sissoo, P. wallichiana, J. regia, and V. nilotica is practiced to be declined in future climate scenarios. Eucalyptus camaldulensis is expected to be expanded its suitability area in future with eastward shift. Senegalia modesta habitat increased in the middle of the century but decreased afterwards in later half of the century. The changing and shifting forests create challenges for sustainable landscapes. Therefore, the study is an attempt to provide management tools for monitoring the climate change-driven shifting of forest landscapes.

Simulation of Land Use Change by Storylines of Shared Socio-Economic Reference Pathways (사회경제 경로 시나리오에 따른 토지이용 변화 시뮬레이션)

  • KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2016
  • In an effort to establish adaptive measures for low carbon use and climate change, this study developed storylines for shared socio-economic reference pathways(SSP) and simulated change in land use for each storyline. First, cellular automata modeling was performed using past data, and a transition rule for the local characteristics of each planning area under study was derived by comparing with the results of the base year. Second, three storylines were formulated based on the hypothesized change in land use for the SSP. SSP1, the scenario for sustainability, assumed that the land was developed into a compact city, SSP2 assumed the development of a road through the middle of the land while maintaining the current situation, and SSP3 assumed unsustainable development into a fragmented world. Third, change in land use depending on planning area was predicted by integrating the SSP scenarios with cellular automata(CA) modeling. According to the results of analysis using the SSP scenarios, the urban area ratio increased slightly up to 2020 in SSP1 and up to 2030 in SSP2 and did not change any more subsequently, but it increased continuously until 2050 in SSP3 that assumed low level urban planning. These results on change in land use are expected to contribute towards making reasonable decisions and policies on climate change, and the outcomes of simulation derived from spatial downscaling, if applied to vulnerability assessment, will be useful to set the priority of policies on climate change adaptation.

Projecting future hydrological and ecological droughts with the climate and land use scenarios over the Korean peninsula (기후 및 토지이용 변화 시나리오 기반 한반도 미래 수문학적 및 생태학적 가뭄 전망)

  • Lee, Jaehyeong;Kim, Yeonjoo;Chae, Yeora
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.427-436
    • /
    • 2020
  • It is uncertain how global climate change will influence future drought characteristics over the Korean peninsula. This study aims to project the future droughts using climate change and land use change scenarios over the Korean peninsula with the land surface modeling system, i.e., Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro). The Representative Concentration Pathways (RCPs) 2.6 and 8.5 are used as future climate scenarios and the Shared Socio-economic Pathways (SSPs), specifically SSP2, is adopted for the land use scenario. The using Threshold Level Method (TLM), we identify future hydrological and ecological drought events with runoff and Net Primary Productivity (NPP), respectively, and assess drought characteristics of durations and intensities in different scenarios. Results show that the duration of drought is longer over RCP2.6-SSP2 for near future (2031-2050) and RCP8.5-SSP2 (2080-2099) for the far future for hydrological drought. On the other hand, RCP2.6-SSP2 for the far future and RCP8.5-SSP2 for the near future show longer duration for ecological drought. In addition, the drought intensities in both hydrological and ecological drought show different characteristics with the drought duration. The intensity of the hydrological droughts was greatly affected by threshold level methods and RCP2.6-SSP2 for far future shows the severest intensity. However, for ecological drought, the difference of the intensity among the threshold level is not significant and RCP2.6-SSP2 for near future and RCP2.6-SSP2 for near future show the severest intensity. This study suggests a possible future drought characteristics is in the Korea peninsula using combined climate and land use changes, which will help the community to understand and manage the future drought risks.