DOI QR코드

DOI QR Code

The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios

SSP 시나리오에 따른 기후변화가 다목적댐 수력발전량에 미치는 영향 분석

  • Wang, Sizhe (Department of Civil and Environmental Systems Engineering, Hanyang University) ;
  • Kim, Jiyoung (Department of Smart City Engineering, Hanyang University) ;
  • Kim, Yongchan (Department of Civil and Environmental Engineering, Hongik University) ;
  • Kim, Dongkyun (Department of Civil and Environmental Engineering, Hongik University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University)
  • 왕사철 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김지영 (한양대학교 대학원 스마트시티공학과) ;
  • 김용찬 (홍익대학교 대학원 토목공학과) ;
  • 김동균 (홍익대학교 건설환경공학과) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2024.05.23
  • Accepted : 2024.07.05
  • Published : 2024.07.31

Abstract

Recent droughts make hydroelectric power generation (HPG) decreasing. Due to climate change in the future, the frequency and intensity of drought are expected to increase, which will increase uncertainty of HPG in multi-purpose dams. Therefore, it is necessary to estimate the amount of HPG according to climate change scenarios and analyze the effect of drought on the amount of HPG. This study analyzed the future HPG of the Soyanggang Dam and Chungju Dam according to the SSP2-4.5 and SSP5-8.5 scenarios. Regression equations for HPG were developed based on the observed data of power generation discharge and HPG in the past provided by My Water, and future HPGs were estimated according to the SSP scenarios. The effect of drought on the amount of HPG was investigated based on the drought severity calculated using the standardized precipitation index (SPI). In this study, the future SPIs were calculated using precipitation data based on four GCM models (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) provided through the environmental big data platform. Overall results show that climate change had significant effects on the amount of HPG. In the case of Soyanggang Dam, the amount of HPG decreased in the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario the CanESM model showed a 65% reduction in 2031, and under the SSP5-8.5 scenario the ACCESS-ESM1-5 model showed a 54% reduction in 2029. In the case of Chungju Dam, under the SSP2-4.5 and SSP5-8.5 scenarios the average monthly HPG compared to the reference period showed a decreasing trend except for INM-CM4 model.

최근 발생한 가뭄으로 인해 수력발전량이 감소하고 있다. 또한, 미래 기후변화로 인해 가뭄의 빈도와 강도는 커질 것으로 예상되며, 이는 다목적댐의 수력발전량에 대한 불확실성이 커지게 할 것이다. 따라서 미래 기후변화 시나리오에 따른 수력발전량을 추정하고, 가뭄이 수력발전량에 미치는 영향을 분석할 필요가 있다. 본 연구에서는 SSP2-4.5와 SSP5-8.5 시나리오에 따른 소양강댐과 충주댐의 수력발전량을 분석하였다. My water에서 제공되는 수력발전량, 발전방류량 및 총방류량 자료를 바탕으로 수력발전량에 대한 회귀방정식을 개발하고, SSP 시나리오에 따른 미래 수력발전량을 추정하였다. 또한 환경 빅데이터 플랫폼을 통해 제공되는 4개의 GCM (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) 모델에 대한 강수량 자료를 기반으로 표준강수지수(SPI)를 산정하여 연간 가뭄 심각도를 계산하고, 가뭄에 따른 수력발전량을 비교 분석하였다. 전체적인 분석 결과 기후변화는 수력발전량에 유의한 영향을 미치는 것으로 나타났다. 소양강댐의 경우, SSP2-4.5 및 SSP5-8.5 시나리오에서 수력발전량이 감소하는 추세가 나타났고, SSP2-4.5 시나리오에서 CanESM 모델은 2031년에 65%, SSP5-8.5 시나리오에서 ACCESS-ESM1-5 모델은 2029년에 54% 감소하는 것을 나타냈다. 충주댐의 경우, SSP2-4.5와 SSP5-8.5 시나리오에서 기준 기간 대비 월평균 수력발전량이 INM-CM4 모델을 제외하고 감소 추세를 보였다.

Keywords

Acknowledgement

이 논문은 2023년 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-RS-2023-00280330).

References

  1. Adnan, S., Ullah, K., Shuanglin, L., Gao, S., Khan, A. K., and Rashed, M. (2018). "Comparison of various drought indices to monitor drought status in Pakistan." Climate Dynamics, Vol. 51, pp. 1885-1899.
  2. An, S., Park, G., Jung, H., and Jang, D. (2022). "Assessment of future drought index using SSP scenario in Rep. of Korea." Sustainability, Vol. 14, No. 7, 4252.
  3. Do, Y., and Kim, G. (2018). "Analysis of the change of dam inflow and evapotranspiration in the Soyanggang Dam basin according to the AR5 climate change scenarios." Journal of The Korean Society of Agricultural Engineers, Vol. 60, No. 1, pp. 89-99. (in Korean)
  4. Ghafouri-Azar, M., and Bae, D.-H. (2018). "Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model." Journal of Korea Water Resources Association, Vol. 51, No. S-1, pp.1091-1103. (in Korean)
  5. Guo, L., Chen, S., Kong, D., Yan, S., Xu, Y., Majid, K., and Fatemeh, G. (2021). "Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model." Energy Reports, Vol. 7, pp. 5431-5445.
  6. Kankam-Yeboah, K., Obuobie, E., Amisigo, B., and Opoku-Ankomah, Y. (2013). "Impact of climate change on streamflow in selected river basins in Ghana." Hydrological Sciences Journal, Vol. 58, No. 4. pp. 773-788.
  7. Kim, J., Byun, S., Yoo, J., and Kim, T.W. (2023). "Investigating the effects of meteorological disasters on hydroelectric power generation using a structural equation modeling." Journal of the Korean Society of Civil Engineers, Vol. 43, No. 1, pp. 33-41. (in Korean)
  8. Kim, S., Masoud, A., and Tricia, A.S. (2022a). "Climate change impact on water supply and hydropower generation potential in Northern Manitoba." Journal of Hydrology: Regional Studies, Vol. 41. 101077.
  9. Kim, Y., Kim, Y., Hwang, S., and Kim, D. (2022b). "Prospect of future water resources in the basins of Chungju Dam and Soyang-gang Dam using a physics-based distributed hydrological model and a deep-learning-based LSTM model." Journal of Korea Water Resources Association, Vol. 55, No. 12, pp. 1115-1124. (in Korean)
  10. Korean Statistical Information Service (KOSIS) (2023). South Korea, accessed 26 April 2024, <https://kosis.kr/search/search.do?query=발전량>.
  11. Labedzki, L. (2007). "Estimation of local drought frequency in central Poland using the standardized precipitation index SPI." Irrig. and Drain, Vol. 56, pp.67-77.
  12. Mlynski, D., Ksiqzek, L., and Bogdal, A. (2024). "Meteorological drought effect for central Europe's hydropower potential." Renewable and Sustainable Energy Reviews, Vol. 191. 114175.
  13. Park, M., Shin, H., Park, G, and Kim, S. (2010). "Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT." Journal of The Korean Society of Civil Engineers, Vol. 30, pp. 337-346. (in Korean)
  14. Pieter, D., Clemente, A., Antonio, S., Roger, D., Asher, K., and Ednildo, A. (2018). "Hydroelectric production from Brazil's Sao Francisco River could cease due to climate change and inter-annual variability." Science of The Total Environment, Vol. 634, pp. 1540-1553.
  15. Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L., and Tarroja, B. (2020a). "Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation." Journal of Hydrology, Vol. 580. 123922.
  16. Qin, P., Xu, H., Liu, M., Xiao, C., Forrest, K.E., Samuelsen, S., and Tarroja, B. (2020b). "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China." Applied Energy, Vol. 279. 115694.
  17. Roger, G., and Eddie, R. (2023). 2023 Hydropower Status Report, International Hydropower Association 2023, accessed 26 April 2024, <https://www.hydropower.org/publications/2023-world-hydropower-outlookt>.
  18. Shiru, M., and Chung, E.S. (2021). "Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria." Theoretical and Applied Climatology, Vol. 146, pp.599-615.
  19. The Joong Booilbo (TJB) (2022) Persistent spring drought... Chungju Dam water levels significantly drop, accessed 8 April 2024, <https://www.jbnews.com/news/articleView.html?idxno=1363485>.
  20. The Korea Economic Daily (TKED) (2022). Soyang Dam water level plunges due to drought, 11 meters lower than last year, accessed 8 April 2024, <https://www.hankyung.com/article/202206137355Y>.
  21. The Kukmin Daily (TKD) (2015). The worst drought in 42 years... Report on the situation of Chungju Dam and Soyang Dam Crisis of changing riverbeds and suspension of cruise ships... Threat to residents livelihoods, accessed 1 April 2024, <https://www.kmib.co.kr/article/view.asp?arcid=0923016840>.
  22. Wagner, T., Themebl, M., Schuppel, A., Gobiet, A., Stigler, H., and Birk, S. (2017). "Impacts of climate change on stream flow and hydro power generation in the Alpine region." Environmental Earth Sciences, Vol. 76, No. 4, pp.1-22.
  23. Zhao, X., Huang, G., Li, Y., and Lu, C. (2023). "Responses of hydroelectricity generation to streamflow drought under climate change." Renewable and Sustainable Energy Reviews, Vol. 174, 113141.