• Title/Summary/Keyword: SSN

Search Result 96, Processing Time 0.024 seconds

SSN(Simultaneous Switching Noise) Modeling of Power/Ground Lines with Decoupling Capacitor (디커플링 커패시터가 존재하는 파워/그라운드 라인의 SSN모델링)

  • Bae Seongkyu;Eo Yungseon;Shim Jongin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.71-80
    • /
    • 2004
  • A new SSN(Simultaneous Switching Noise) model is presented, which can afford to investigate SSN due to integrated circuit package. It is shown that previous SSN models are not accurate enough to be practical since they do not take decoupling capacitor into account. In this paper, a new SSN model including the decoupling capacitor is developed. It is verified that the model has excellent agreement(within $5\%$ error) with HSPICE simulation which employs TSMC 0.18um CMOS process technology.

The Antioxidant Activity of Sesami Semen Nigrum on Leydig TM3 cells (흑지마(黑芝麻)가 Leydig cell의 항산화에 미치는 영향)

  • Chang, Mun-Seog;Chung, Kyu-Jin;Chang, Won-Kyu;Park, Seong-Kyu
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Objectives : The purpose of this study was to estimate the antioxidant activity of Sesami Semen Nigrum extract (SSN) on mouse Leydig cells, TM3. Methods : Cell viability assays were performed. The protective effects of SSN against hydrogen peroxide-induced oxidative stress in Leydig cells were examined by measuring cell viability. Lipid peroxidation levels and antioxidant enzyme concentrations such as SOD and catalase were measured. Results : Cell viability of Leydig cells increased with SSN concentration. Cell viability of Leydig cells was 136.66% when SSN concentration was $50{\mu}g/ml$. Cell viability of the hydrogen peroxide group was statistically decreased (p<0.01) compared with the control group. Antioxidant effect of SSN was measured and the protective effect of SSN concentration were 5, 10, $50{\mu}g/ml$. LPO were decreased significantly at 5, $50{\mu}g/ml$ of SSN concentrations. SOD activity was increased at 1, 10, $50{\mu}g/ml$ of SSN concentrations. Catalase activity was significantly increased at 123.7, 133.3 and 131.9 units/mg protein when SSN concentrations were 5, 10 and $50{\mu}g/ml$, respectively. Conclusions : In conclusion, Sesami Semen Nigrum extract has antioxidant activities in Leydig cells against oxidative stress.

Accurate SSN Analysis using Wideband Decoupling Capacitor Model (광대역 디커플링 캐패시터 모델을 이용한 정확한 SSN 분석)

  • 손경주;권덕규;이해영;최철승;변정건
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1048-1056
    • /
    • 2001
  • Decoupling capacitors are commonly used to reduce the effect of SSN propagated through parallel power and ground planes in high-speed multilayer printed circuit boards (PCBs). In this paper, we introduced a simple high frequency measurement and proposed a wideband (50 MHz ∼3 GHz) equivalent circuit model for decoupling capacitor considering high frequency parasitic effects. The proposed model can be easily combined with the SPICE model of power supply planes far SSN analysis. The circuit simulations with the proposed model show good agreement with the measurement results. Also, we expect to accurately analyze the noise reduction effect as a function of value and location using the proposed model of decoupling capacitor.

  • PDF

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (II) - Surface Characteristics of LAM Machined SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (II) - 예열선삭된 SSN 및 HIPSN 질화규소 세라믹의 표면특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.80-85
    • /
    • 2010
  • This study focused on laser assisted machining (LAM) of silicon nitride ceramic that efficiently removes the material through machining of the softened zone by local heating. The effects of laser-assisted machining parameters were studied for cost reduction, and active application in processing of silicon nitride ceramics in this study. Laser assisted machining of silicon nitride allows effective cutting using CBN tool by local heating of the cutting part to the softening temperature of YSiAlON using by the laser beam. When silicon nitride is sufficiently preheated, the surface is oxidized and decomposed and then forms bloating, micro crack and silicate layer, thereby making the cutting process more advantageous. HIPSN and SSN specimens were used to study the machining characteristics. Higher laser power makes severer oxidation and decomposition of both materials. Therefore, HIPSN and SSN specimens were machined more effectively at higher power.

Anti-inflammatory and Antioxidant Effects of Spiraea prunifolia Sieb. et Zucc. var. simpliciflora Nakai in RAW 264.7 Cells (조팝나무 뿌리 열수 추출물이 RAW264.7 세포에서 미치는 항산화 및 항염증 활성)

  • Sim, Mi-Ok;Lee, Hyun Joo;Jang, Ji Hun;Lee, Hyo Eun;Jung, Ho-Kyung;Kim, Tae-Muk;No, Jong hyun;Jung, Jakyun;Jung, Da Eun;Cho, Hyun-Woo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.335-342
    • /
    • 2017
  • Spiraea prunifolia Sieb. et Zucc. var. simpliciflora Nakai (SSN) has been used for the anti-inflammation in traditional folk medicine. To compare water and methanol extracts of SSN, we analyzed major components using LC IT TOF MS. The major components of hot water extract were identified as caffeic acid and p-coumaric acid, but methanol extract was not well established. However, methanol extract was detected with less polarity compounds compared to hot water extract. Next, we investigated the inhibitory effects of SSN water extract on the lipopolysaccharide (LPS)-induced inflammatory response or $H_2O_2-induced$ oxidative stress in Raw 264.7 macrophage cells. SSN strongly suppressed the production of nitric oxide in LPS-induced inflammatory response without cytotoxcity. The SSN possessed free radical scavenging activities such as DPPH ($IC_{50}=320.2{\mu}g/m{\ell}$), ABTS ($IC_{50}=124.0{\mu}g/m{\ell}$), and superoxide anion radical ($IC_{50}=122.6{\mu}g/m{\ell}$). The total phenol and flavonoid content of SSN was 56.7 mg/g, and 15.1 mg/g, respectively. Furthermore, SSN decreased the $H_2O_2-induced$ cytotoxicity by enhancing the cell viability, and SSN significantly reduced the intracellular reactive oxygen species (ROS) level. Therefore, SSN may be recommended as an effective strategy to prevent and/or treat various inflammation and ROS-induced diseases.

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.

Bandwidth Enhancement for SSN Suppression Using a Spiral-Shaped Power Island and a Modified EBG Structure for a ${\lambda}$/4 Open Stub

  • Kim, Bo-Bae;Kim, Dong-Wook
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.201-208
    • /
    • 2009
  • This paper proposes a spiral-shaped power island structure that can effectively suppress simultaneous switching noise (SSN) when the power plane drives high-speed integrated circuits in a small area. In addition, a new technique is presented which greatly improves the resonance peaks in a stopband by utilizing ${\lambda}$/4 open stubs on a conventional periodic electromagnetic bandgap (EBG) power plane. Both proposed structures are simulated numerically and experimentally verified using commercially available 3D electromagnetic field simulation software. The results demonstrate that they achieve better SSN suppression performance than conventional periodic EBG structures.

  • PDF

Simultaneous Switching Noise Reduction Technique in Multi-Layer Boards using Conductive Dielectric Substrate (전도성 유전기판을 이용한 다층기판에서의 Simultaneous Switching Noise 감소 기법)

  • 김성진;전철규;이해영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.9-14
    • /
    • 1999
  • In this paper, we proposed a simultaneous switching noise (SSN) reduction technique in multi-layer boards (MLB) for high-speed digital applications and analyzed it using the Finite Difference Time Domain (FDTD) method. The new structure using conductive dielectric substrates is effective for the reduction of SSN couplings and resonances. The uniform insertion of the conducive layer reduced the SSN coupling and resonance by 85% and the partial insertion only around the edges reduced by 55% respectively.

  • PDF

Composite EBG Power Plane Using Magnetic Materials for SSN Suppression in High-Speed Digital Circuits (고속 디지털 회로의 SSN 억제를 위한 자성 재료가 적용된 복합형 EBG 전원면)

  • Eom, Dong-Sik;Kim, Dong-Yeop;Byun, Jin-Do;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.933-939
    • /
    • 2008
  • In this paper, a new composite electromagnetic bandgap(EBG) structure using magnetic materials is proposed for simultaneous switching noise(SSN) suppression in the high-speed digital circuits. The proposed EBG structure has periodic unit cells of square-patches connected by spiral-shaped bridges. The magnetic materials are located on the unit cells of spiral-shaped EBG. The real part of the permeability shifts bandgap to the lower frequency region due to the increased effective inductance. The imaginary part of the permeability has magnetic loss that decreases parasitic LC resonance peaks from between the unit cells. As a result, the proposed structure has the lower cut-off frequency compared with conventional EBG structure and -30 dB SSN suppression bandwidth from 175 MHz to 7.7 GHz. The proposed structure is expected to improve the power integrity and reduce the size of the EBG power plane.