• Title/Summary/Keyword: SSI effects

Search Result 99, Processing Time 0.021 seconds

Evaluation of a Simplified Criterion for SSI Analysis (지반-구조물 상호작용 해석의 단순화된 기준에 대한 평가)

  • Kim, Jae-Min;Kim, Won-Hee;Hyun, Chang-Hun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.337-344
    • /
    • 2006
  • This paper is concerned with the simplified criterion given in ASCE 4-98, for determining whether soil-structure interaction (SSI) analysis is required for seismic response analysis of nuclear power plant structures. In this study, the criterion is evaluated for a couple of example structures including an existing nuclear power plant and the Hualien large-scale seismic test building. Forced vibration analysis and seismic response analysis are carried out using the simple stick model with soil springs and an elaborated SSI analytical model. From the numerical analyses, it is found that the criterion may not allow the fixed-base analysis for bedrock with shear wave velocity of greater than 1,100m/s which is a well-known criterion for a rock site. In addition, it is indicated that peak amplification as well as the peak broadening specified in NRC RG 1.122. shall be considered to include the effects of SSI.

  • PDF

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

Analysis of Earthquake Response Data Recorded from the Hualien Large-Scale Seismic Test (Hualien 대형내진모델시험의 지진응답 계측데이타 분석)

  • 현창헌
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.335-342
    • /
    • 1998
  • A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1996, fifteen earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The recorded data were analyzed to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. The ground response data were analyzed for their variations with depth, with distance from the model structure, and at the same depths along downhole arrays. Variations of soil stiffness and soil-structure system frequencies were also evaluated against maximum ground motion. In addition, the site soil properties were derived based on correlation analysis of the recorded data and then correlated with those from the geotechnical investigation data.

  • PDF

The effect of foundation soil behavior on seismic response of long bridges

  • Hoseini, Shima Sadat;Ghanbari, Ali;Davoodi, Mohammad;Kamal, Milad
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.583-595
    • /
    • 2019
  • In this paper, a comprehensive investigation of the dynamic response of a long-bridge subjected to spatially varying earthquake ground motions (SVEGM) is performed based on a proposed analytical model which includes the effect of soil-structure interaction (SSI). The spatial variability of ground motions is simulated by the powerful record generator, SIMQKE II. Modeling of the SSI in the system is simplified by replacing the pile foundations and soil with sets of independent equivalent linear springs and dashpots along the pile groups. One of the most fundamental objectives of this study is to examine how well the proposed model simulates the dynamic response of a bridge system. For this purpose, the baseline data required for the evaluation process is derived from analyzing a 3D numerical model of the bridge system which is validated in this paper. To emphasize the importance of the SVEGM and SSI, bridge responses are also determined for the uniform ground motion and fixed base cases. This study proposing a compatible analytical model concerns the relative importance of the SSI and SVEGM and shows that these effects cannot be neglected in the seismic analysis of long-bridges.

The Effects of Socioscientific Issue (SSI)-Based Instruction on Underachieving 9th-Grade Students: Achievement, Attitudes, and Scientific Participation and Lifelong Learning Competency (과학기술 관련 사회쟁점(SSI) 기반 수업이 중학교 3학년 과학 학습부진 학생의 기초 학업성취도, 과학학습에 대한 태도 및 과학적 참여와 평생학습 역량에 미치는 효과)

  • Jin-Kyong Hur;Nam-Hwa Kang
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.11-23
    • /
    • 2023
  • In this study, we examined the effect of socioscientific issue (SSI) based science lessons on underachieving 9th-grade students. A total of seven lessons centered on two SSIs related to the national science curriculum were developed and implemented during the first semester of 2021. Data were collected from 185 9th-grade students in one middle school in a mid-sized city of South Korea. Among them, 37 were identified as achieving far below the standards (underachieving students hereafter). Quantitative data were collected from pre- and post-tests on basic science content and attitudes and competency measures. To supplement quantitative data, lesson observation notes were recorded, and student interviews with a selected number of students were conducted. The analysis of quantitative data was conducted through the Wilcoxon Signed Rank Test and paired t-tests. Qualitative data were analyzed to find reasons for changing attitudes. The findings showed that the SSI-based lessons were more effective on underachieving students than the others in enhancing basic academic achievement, while there was no significant effect on all in attitudes and competency. Lesson observation data showed that underachieving students were more engaged in SSI-based lessons than before. Student interviews demonstrated several reasons why they were engaged, suggesting the aspects of SSI-based lessons that facilitated underachieving students' learning. Further research topics are suggested.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Effect of static and dynamic impedance functions on the parametric analysis of SSI system

  • Maroua Lagaguine;Badreddine Sbarta
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.293-310
    • /
    • 2024
  • This paper investigates the dynamic response of structures during earthquakes and provides a clear understanding of soil-structure interaction phenomena. It analyses various parameters, comprising ground shear wave velocity and structure properties. The effect of soil impedance function form on the structural response of the system through the use of springs and dashpots with two frequency cases: independent and dependent frequencies. The superstructure and the ground were modeled linearly. Using the substructure method, two different approaches are used in this study. The first is an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. The second is a numerical analysis generated with 2D finite element modeling using ABAQUS software. The superstructure is represented as a SDOF system in all the SSI models assessed. This analysis establishes the key parameters affecting the soil-structure interaction and their effects. The different results obtained from the analysis are compared for each studied case (frequency-independent and frequency-dependent impedance functions). The achieved results confirm the sensitivity of buildings to soil-structure interaction and highlight the various factors and effects, such as soil and structure properties, specifically the shear wave velocity, the height and mass of the structure. Excitation frequency, and the foundation anchoring height, also has a significant impact on the fundamental parameters and the response of the coupled system at the same time. On the other hand, it have been demonstrated that the impedance function forms play a critical role in the accurate evaluation of structural behavior during seismic excitation. As a result, the evaluation of SSI effects on structural response must take into account the dynamic properties of the structure and soil accordingly.

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

Effects of Community-Based SSI Programs on Promoting Middle School Students' Understanding of Issues and Character and Values as Citizens: Focused on Fine Dust Issues (지역사회연계 미세먼지 교육프로그램이 중학생들의 이슈에 대한 이해와 시민으로서의 인성과 가치관 함양에 미치는 효과)

  • Kim, Gahyoung;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.6
    • /
    • pp.911-920
    • /
    • 2017
  • The purpose of the study is to investigate the effects of community-based SSI programs (SSI-COMM) regarding "fine dust" on promoting middle school students' understanding of community issues and their character and values as citizens. SSI-COMM on fine dust was implemented in 4 middle schools located in Seoul, and 151 7th graders participated in the program lasting over 8 weeks. Data was collected through two questionnaires (i.e. students' understanding of issues, and character and values as citizens) and individual interviews with selected students. Results indicated that there were statistically significant increases in their understanding of fine dust issue after the program. In addition, the program significantly contributed to enhancing students' character and values, especially in the domains of social and moral compassion and socioscientific accountability. Student interviews revealed that they became more aware of the local community problems caused by fine dusts and started to consider what efforts should be made to solve them. They also felt individual responsibility for the occurrence of fine dust, and the need for participation and practice of community activities for vulnerable groups in affected areas.