• 제목/요약/키워드: SSF process

검색결과 48건 처리시간 0.023초

반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향 (The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material)

  • 최재찬;박형진;이병목
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF

암모니아수 침지 전처리 공정을 이용한 볏짚의 저온 동시당화발효 (Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw)

  • 장서윤;김준석
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.430-435
    • /
    • 2014
  • 섬유소계 바이오매스의 주요 구성요소 간의 관계에 의한 물리적, 화학적 장벽은 셀룰로오스를 발효 가능한 당으로 전환시키는 효소당화를 방해한다. 전처리의 주 목적은 셀룰로오스의 효소당화율을 향상시키기 위하여 기질로의 효소접근성을 높이는 것으로, 전처리 공정의 발전은 지속적으로 요구되고 있다. 본 연구에서는, 간단하고, 상대적으로 저비용인 암모니아수에 의한 침지공정을 전처리방법로 채택하였다. 기질로는 국내 농업 잔류물 중 생산량이 높은 볏짚을 채택하였다. 암모니아수에 의한 침지 공정은 3, 12, 24 그리고 72시간 동안 수행되었다. 그리고 동시당화발효에 미치는 전처리의 효과를 조사하기 위해, 효소당화와 동시당화발효를 30, 40 그리고 $50^{\circ}C$에서 수행하였다. 연구 결과에 따르면, 볏짚이 암모니아수에 의한 침지 처리 되었을 때, 기존의 보편적인 동시당화발효와 비교하여 상대적으로 적은 효소사용량과 낮은 온도($30^{\circ}C$) 조건에서도 당화와 동시당화발효가 수행될 수 있음을 확인하였다. 그리고 암모니아수에 의한 침지 처리는 초기 당화속도를 증가시킴으로써 24시간 이내에 발효를 종료시켰다.

Cybernetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production from Steam-Exploded Wood with Brettanomyces custersii

  • Shin Dong-Gyun;Yoo Ah-Rim;Kim Seung-Wook;Yang Dae-Ryook
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1355-1361
    • /
    • 2006
  • The simultaneous saccharification and fermentation (SSF) process consists of concurrent enzymatic saccharification and fermentation. In the present cybernetic model, the saccharification process, which is based on the modified Michaelis-Menten kinetics and enzyme inhibition kinetics, was combined with the fermentation process, which is based on the Monod equation. The cybernetic modeling approach postulates that cells adapt to utilize the limited resources available to them in an optimal way. The cybernetic modeling was suitable for describing sequential growth on multiple substrates by Brettanomyces custersii, which is a glucose- and cellobiose-fermenting yeast. The proposed model was able to elucidate the SSF process in a systematic manner, and the performance was verified by previously published data.

반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석 (Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging)

  • 최재찬;박형진;조해용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Saccharina japonica를 이용한 전처리 및 분리당화발효와 동시당화발효로부터 에탄올 생산 (Ethanol Production by Separate Hydrolysis and Fermentation and Simultaneous Saccharification and Fermentation Using Saccharina japonica)

  • 김민지;김성구
    • KSBB Journal
    • /
    • 제27권2호
    • /
    • pp.86-90
    • /
    • 2012
  • Ethanol fermentations were carried out using simultaneous saccharification and fermentation (SSF) and separated hydrolysis and fermentation (SHF) processes with monosaccharides from seaweed, Saccharina japonica (sea tangle, Dasima) as the biomass. The pretreatment was carried out by thermal acid hydrolysis with $H_2SO_4$ or HCl. Optimal pretreatment condition was determined at 10% (w/v) seaweed slurry with 37.5 mM $H_2SO_4$ at $121^{\circ}C$ for 60 min. To increase the yield of saccharfication, isolated marine bacteria Bacillus sp. JS-1 was used and 48 g/L of reducing sugar were produced. Ethanol fermentation was performed using SSF and SHF process with Pachysolen tannophilus KCTC 7937. The ethanol concentration was 6.5 g/L by SSF and 6.0 g/L by SHF.

Ethanol Production from Lignocellulosic Biomass by Simultaneous Saccharification and Fermentation Employing the Reuse of Yeast and Enzyme

  • KIM, JUN-SUK;KYUNG-KEUN OH;SEUNG-WOOK KIM;YONG-SEOB JEONG;SUK-IN HONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.297-302
    • /
    • 1999
  • Simultaneous saccharification and fermentation (SSF) experiments were carried out with a lignocellulosic biomass. The effects of temperature on enzymatic saccharification and the ethanol fermentation were also investigated. The batch SSF process gave a final ethanol concentration of 10.44 g/l and equivalent glucose yield of 0.55 g/g, which was increased by 67% or higher over the saccharification at 42℃. The optimal operating condition was found to vary in several parameters, such as the transmembrane pressure, permeation rate, and separation coefficient, related to the SSF combined with membrane system (semi-batch system). When the fermentation was operated in a semi-batch mode, the efficiency of the enzymes and yeast lasted three times longer than in a batch mode.

  • PDF

Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae

  • Cho, YuKyeong;Kim, Min-Ji;Kim, Sung-Koo
    • KSBB Journal
    • /
    • 제28권6호
    • /
    • pp.366-371
    • /
    • 2013
  • Ethanol productions were performed by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using seaweed, Enteromorpha intestinalis (sea lettuce). Pretreatment conditions were optimized by the performing thermal acid hydrolysis and enzymatic hydrolysis for the increase of ethanol yield. The pretreatment by thermal acid hydrolysis was carried out with different sulfuric acid concentrations in the range of 25 mM to 75 mM $H_2SO_4$, pretreatment time from 30 to 90 minutes and solid contents of seaweed powder in the range of 10~16% (w/v). Optimal pretreatment conditions were determined as 75 mM $H_2SO_4$ and 13% (w/v) slurry at $121^{\circ}C$ for 60 min. For the further saccharification, enzymatic hydrolysis was performed by the addition of commercial enzymes, Celluclast 1.5 L and Viscozyme L, after the neutralization. A maximum reducing sugar concentration of 40.4 g/L was obtained with 73% of theoretical yield from total carbohydrate. The ethanol concentration of 8.6 g/L of SHF process and 7.6 g/L of SSF process were obtained by the yeast, Saccharomyces cerevisiae KCTC 1126, with the inoculation cell density of 0.2 g dcw/L.

반용융 단조에서 가압유지 시간에 의한 미세조직의 특성 (Microstructural Characteristics by Compression Holding Time in Semi-Solid Forging)

  • 최재찬;박형진;이병목
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.174-182
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net-shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression -holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect microstructural characteristics and shape of products is important to make decision, where it is necessary to find overall heat transfer coefficient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of obtaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression holding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression holding time on microstructural characteristics of products is finally investigated by experiment.

  • PDF

섬유질계 동시당화발효를 위한 내열성 융합 효모, Kluyveromyces marxianus CHY1612의 개발 (Development of Thermostable Fusant, CHY1612 for Lignocellulosic Simultaneous Saccharification and Fermentation)

  • 강현우;김율;박주용;민지호;최기욱
    • KSBB Journal
    • /
    • 제25권6호
    • /
    • pp.565-571
    • /
    • 2010
  • To develop thermostable ethanol fermentative yeast strain for lignocellulosic simultaneous saccharification and fermentation, high ethanol producing yeast, Saccharomyces cerevisiae CHY1012 and thermostable yeast, Kluyveromyces marxianus CHY1703 were fused by protoplast fusion. The thermostable fusant, CHY1612 was identified as a Kluyveromyces marxianus by phenotypic and physiological characteristics, as well as molecular analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1 + 2 regions. For lignocellulosic ethanol production, AFEX pretreated barley straw at $150^{\circ}C$ for 90 min was used in a simultaneous saccharification and fermentation (SSF) process using thermotolerant CHY1612. The SSF from 16% pretreated barley straw at $43^{\circ}C$ gave a saccharification ratio of 90.5%, a final ethanol concentration of 38.5 g/L, and a theoretical yield of 91.2%. These results show that K. marxianus CHY1612 has potential for lignocellulosic ethanol production through simultaneous saccharification and fermentation with further development of process.

음식물 쓰레기 동시당화 발효에 의한 에탄올 생산 (Ethanol Production by Synchronous Saccharification and Fermentation using Food Wastes)

  • 한효정;리홍선;김성준
    • KSBB Journal
    • /
    • 제21권6호
    • /
    • pp.474-478
    • /
    • 2006
  • 본 연구에서는 에탄올의 생산단가를 낮추기 위해, 음식물쓰레기 당화액을 이용하여 효소당화비용을 줄이고 환원당의 기질저해를 감소시키기 위해 회분식의 반연속식 동시당화발효 시스템을 개발하였다. 음식물쓰레기 200 g와 최종효소액 (amylase 기준으로 $3.0\;U/m{\ell}$) $40\;m{\ell}$가 반응하였을 때 생산되는 환원당의 속도는 $35^{\circ}C$에서 $5.84\;g/{\ell}{\cdot}h$로서, strain KJ가 소비하는 환원당 속도는 $-3.88\;g/{\ell}{\cdot}h$와 비슷하여 동시당화발효의 최적온도는 $35^{\circ}C$로 결정되었다. 그리고 음식물쓰레기 당화를 위한 최적 효소농도는 $2.0\;U/m{\ell}$로서 생산되는 환원당의 속도는 4.80 g/L h이었다. 이는 에탄올 생산균주가 $35^{\circ}C$에서 소비하는 환원당의 속도인 $-3.88\;g/{\ell}{\cdot}hr$와 비슷하므로, 효소의 최적농도는 $2.0\;U/m{\ell}$로 결정하였다. Fed-batch식 동시당화발효에서 생산된 환원당을 다 소모하고 나서 12시간 단위로 음식물쓰레기를 공급하여 배양한 결과, 배양 120시간째 에탄올발효 후의 잔존 환원당 농도는 $18.3\;g/{\ell}$, 생성된 에탄올 농도는 $64\;g/{\ell}$, 에탄올의 수율은 0.45 g-ethanol/g-reducing sugar이었다. 그리하여 음식물쓰레기의 Fed-batch식 동시당화발효기술을 개발하여 효소당화비용을 줄이고 환원당의 기질저해를 감소시킴으로써 에탄올 수율을 향상시키는데 성공하였다.