Development of Thermostable Fusant, CHY1612 for Lignocellulosic Simultaneous Saccharification and Fermentation

섬유질계 동시당화발효를 위한 내열성 융합 효모, Kluyveromyces marxianus CHY1612의 개발

  • Kang, Hyun-Woo (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Kim, Yule (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Park, Ju-Yong (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Min, Ji-Ho (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Choi, Gi-Wook (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd.)
  • Received : 2010.11.30
  • Accepted : 2010.12.22
  • Published : 2010.12.31

Abstract

To develop thermostable ethanol fermentative yeast strain for lignocellulosic simultaneous saccharification and fermentation, high ethanol producing yeast, Saccharomyces cerevisiae CHY1012 and thermostable yeast, Kluyveromyces marxianus CHY1703 were fused by protoplast fusion. The thermostable fusant, CHY1612 was identified as a Kluyveromyces marxianus by phenotypic and physiological characteristics, as well as molecular analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1 + 2 regions. For lignocellulosic ethanol production, AFEX pretreated barley straw at $150^{\circ}C$ for 90 min was used in a simultaneous saccharification and fermentation (SSF) process using thermotolerant CHY1612. The SSF from 16% pretreated barley straw at $43^{\circ}C$ gave a saccharification ratio of 90.5%, a final ethanol concentration of 38.5 g/L, and a theoretical yield of 91.2%. These results show that K. marxianus CHY1612 has potential for lignocellulosic ethanol production through simultaneous saccharification and fermentation with further development of process.

Keywords

References

  1. Chung, C. H. (2008) Cellulosic ethanol production. Korean J. Biotechnol. Bioeng. 23: 1-7.
  2. Chang,, V. S. and M. T. Holtzapple (2000) Fundamental Factors Affecting Biomass. Enzymatic Reactivity. Appl. Biochem. Biotechnol. 84-86: 5-37. https://doi.org/10.1385/ABAB:84-86:1-9:5
  3. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  4. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  5. Hahn-Hägerdal, B., K. Karhumaa, C. Fonseca, I. Spencer- Martins, and M. F. Gorwa-Grauslund (2007) Toward industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74: 937-953. https://doi.org/10.1007/s00253-006-0827-2
  6. Hahn-Hagerdal, B., M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi (2006) Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556. https://doi.org/10.1016/j.tibtech.2006.10.004
  7. Sonderegger, M., M. Jeppsson, C. Larsson, M. F. Gorwa- Grauslund, E. Boles, L. Olsson, I. Spencer-Martins, B. Hahn-Hagerdal, and U. Sauer (2004) Fermentation performance of engineered and evolved xylose-fermenting Sacchromyces cerevisiae strains. Biotechnol. Bioeng. 87: 90-98 https://doi.org/10.1002/bit.20094
  8. Dmytruk, O. V., K. V. Dmytruk, A. Ya. Voronovsky, and A. A. Sibirny (2008) Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics. Cytol. Genet. 42: 127-138 https://doi.org/10.1007/s11956-008-2011-3
  9. Choi, G. W., M. H. Han, and Y. Kim (2008) Development of glucoamylase and simultaneous saccharification and fermentaion process for high-yield bioethanol. Korean J. Biotechnol. Bioeng. 23: 499-503.
  10. Wyman, C. E., D. D. Spindler, and K. Grohmann (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3: 301-307. https://doi.org/10.1016/0961-9534(92)90001-7
  11. Kádar, Zs., Zs. Szengyel, and K. Reczey (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop Prod. 20: 103-110. https://doi.org/10.1016/j.indcrop.2003.12.015
  12. Tomas-Pejo, E, J. M. Oliva, M. Ballesteros, and L. Olsson (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 6: 1122-1131.
  13. Turner, P., G. Mamo, and E. N. Karlsson (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6: 9-31. https://doi.org/10.1186/1475-2859-6-9
  14. Jang, H. W. and Y. W. Ryu (1992) Study on the factors affecting the ethanol tolerance of yeast strains by fermentation temperature. Korean J. Biotechnol. Bioeng. 7: 33-37.
  15. Banat, I. M. and R. Marchant (1995) Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. World J. Microbiol. Biotechnol. 11: 304-306. https://doi.org/10.1007/BF00367104
  16. Choi, G. W., H. J. Um, H. W. Kang, Y. Kim, M. Kim, and Y. H. kim (2010) Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus. Biomass Bioenergy 34: 1232-1242. https://doi.org/10.1016/j.biombioe.2010.03.018
  17. Choi, G. W., H. J. Um, Y. Kim, H. W. Kang, M. Kim, B. W. Chung, and Y. H. kim (2010) Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass Bioenergy 34: 1223-1231. https://doi.org/10.1016/j.biombioe.2010.03.019
  18. Herman, A. I. and P. S. Griffin (1968) Respiratorydeficient mutants in Saccharomyces latis. J. Bacteriol. 96: 457-461.
  19. Barclay, A. J. and J. G. Little (1977) Selection of yeast auxotrophs by thymidylate starvation. J. Bacteriol. 132: 1036-1037.
  20. White, T. J., T. Bruns, S. Lee, and J. W. Taylor (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322 In: Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., New York. USA.
  21. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. http://www.nrel.gov/ biomass/analytical_procedures.html.(2010).
  22. Sakanaka, K, W. Yan, M. Kishida, and T. Sakai (1996) Introduction of mitochondria into respiratory-deficient mutant of yeast and improvement of thermostability. J. Ferment. Bioeng. 81: 109-114. https://doi.org/10.1016/0922-338X(96)87586-6
  23. Bai, S., M. W. Kim, J. C. Park, J. H. Kim, and S. B. Chun (1990) Protoplast fusion of Phaffia rhodozyma. Korean J. Biotechnol. Bioeng. 5: 255-261.
  24. Han, M. H., S. K. Moon, Y. Kim, Y. R. Kim, B. W. Chung, and G. W. Choi (2009) Bioethanol production from ammonia percolated wheat straw. Biotechnol. Bioprocess Eng. 14: 606-611. https://doi.org/10.1007/s12257-008-0320-0
  25. Zhang, J., D. Chu, J. Huang, Z. Yu, G. Dai, and J. Bao (2009) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng. 105: 718-728.