• Title/Summary/Keyword: SQL 쿼리 변환

Search Result 7, Processing Time 0.021 seconds

Evaluation of Large Language Models' Korean-Text to SQL Capability (대형 언어 모델의 한국어 Text-to-SQL 변환 능력 평가)

  • Jooyoung Choi;Kyungkoo Min;Myoseop Sim;Haemin Jung;Minjun Park;Stanley Jungkyu Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.171-176
    • /
    • 2023
  • 최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.

  • PDF

Data Transformation through Mapping between XML and Relation Database (XML과 관계형 데이타베이스 매핑을 통한 자료의 변환)

  • Kim Gil-Choon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.5-12
    • /
    • 2004
  • The data transformation between XML and Relation Database is made through the Principle of mapping bewtween them. There are two ways to access SQL Server, one is to assign SQL query to URL and the other is to use template file. MS-SQL server takes advantage of OpenXML function to transform the results of executing SQL query into XML documents. That is, OpenXML first makes node tree and then transforms row set data of XML documents into XML data of relation type. In order to insert XML data into database data. data is extracted from parsing XML documents using sp_xml_preparedocument procedure, and then the document structure is mapped into tree structure and stored in a table of database. Consequently, Data transformation between XML and Relation Database is made through mapping bewtween them. This article proposes the principle of mapping between XML and Relation Database and then shows the implementation of transformation between them so that it introduces the possibilty of bringing the extension and efficiency of data and various effects.

  • PDF

A Design and Implementation of a Query Interpreter for SQL/MM Part5 (SQL/MM Part5를 지원하는 쿼리변환기의 설계 및 구현)

  • Kang Gi-Jun;Lee Bu-Kwon;Seo Yeong-Geon
    • Journal of Digital Contents Society
    • /
    • v.6 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • We need a research for representing and processing of multimedia data in database because of increasing the importance and utilization of the data owing to development of internet technology. RDBMS supports only the storing-structure to store multimedia, but the support for data type, representation and query of multimedia is insufficient. To cope with this problem, ISO/IEC standardized SQL multimedia(SQL/MM) for multimedia data. However, ORDBMS supports SQL/MM, but RDBMS does not support it. Therfore, this theis proposes a query interpreter to support SQL/MM in MS-SQL 2000 as one of RDBMS and introduces a image retrieval application using it. The quary interpreter supports the function to convert SQL/MM into SQL, and additionally the function of the image duplication check. The image processing application using a query interpreter can easily be integrated and operated with traditional RDBMS-based system.

  • PDF

Design and Implementation of SQL Injection attack prevention code conversion application (SQL Injection 공격 방지를 위한 코드 변환 애플리케이션 설계 및 구현)

  • Ha, Man-Seok;Park, Soo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.441-444
    • /
    • 2014
  • 인터넷의 보급에 따른 신속정확하고 편리한 정보처리의 장점에도 불구하고 최근 들어 급증하고 있는 보안 관련 사고들로 인하여 개인정보 및 기업정보의 관리에 대한 대책 마련이 시급한 가운데 있다. 그 중에서도 SQL 삽입 공격에 의한 악의적인 관리자 권한 획득 및 비정상적인 로그인 등으로 인하여 많은 피해가 발생하고 있다. 현재 SQL Injection에 관련된 대부분의 연구는 공격을 탐지하는 방법에 초점이 맞추어져 있다. 본 논문에서는 프로그램 코드를 분석하여 따옴표가 포함된 취약한 인라인 SQL 쿼리 구문을 찾아서 매개변수화된 쿼리로 변경하는 기능을 제공함으로써 근본적인 해결책을 찾고자 하였으며 Java, C#.net 등 다양한 언어를 지원하여 개발 업무에서의 활용성을 높이고자 하였다.

SPARQL-to-SQL: Cache Manager for Advanced Query Efficiency (SPARQL-to-SQL: 질의 성능 향상을 위한 캐시 관리자)

  • Kim, Seok-hyun;Lee, Sang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.765-766
    • /
    • 2009
  • 시맨틱(Semantic) 온톨로지(Ontology)에서 SPARQL 질의언어는 W3C 로부터 표준으로 제정된 이후부터 활발히 연구 되고 있다. 그리고 현재까지 온톨로지 기반 어플리케이션 개발이 다방면으로 진행되어 왔는데, 현재 개발된 온톨로지 어플리케이션들은 시맨틱 데이터 저장 및 질의 처리가 파일시스템 기반 및 데이터베이스 기반 방식으로 나누어 진다. 그 중 데이터베이스 기반 방식은 최근부터 연구가 진행되어 왔고 실제 개발된 어플리케이션도 있지만, 아직 질의 최적화 기술에 대해서는 개선할 수 있는 여지가 많다. 따라서 본 논문에서는 관계형 데이터 베이스를 기반한 온톨로지 데이터 저장 및 질의 처리 방법에서 캐시를 이용한 질의 속도 향상 방법을 제시하도록 하겠다. SPQARQL에서 변환된 SQL 질의 수행시 그 결과를 캐시하고, 후속 SQL 질의를 이전 질의와 비교하여 이전 SQL 질의와 일치하거나 그 결과가 포함 될 경우 캐시된 결과를 사용해 쿼리 속도를 향상 시킬 수 있다.

Natural Language Processing Model for Data Visualization Interaction in Chatbot Environment (챗봇 환경에서 데이터 시각화 인터랙션을 위한 자연어처리 모델)

  • Oh, Sang Heon;Hur, Su Jin;Kim, Sung-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.281-290
    • /
    • 2020
  • With the spread of smartphones, services that want to use personalized data are increasing. In particular, healthcare-related services deal with a variety of data, and data visualization techniques are used to effectively show this. As data visualization techniques are used, interactions in visualization are also naturally emphasized. In the PC environment, since the interaction for data visualization is performed with a mouse, various filtering for data is provided. On the other hand, in the case of interaction in a mobile environment, the screen size is small and it is difficult to recognize whether or not the interaction is possible, so that only limited visualization provided by the app can be provided through a button touch method. In order to overcome the limitation of interaction in such a mobile environment, we intend to enable data visualization interactions through conversations with chatbots so that users can check individual data through various visualizations. To do this, it is necessary to convert the user's query into a query and retrieve the result data through the converted query in the database that is storing data periodically. There are many studies currently being done to convert natural language into queries, but research on converting user queries into queries based on visualization has not been done yet. Therefore, in this paper, we will focus on query generation in a situation where a data visualization technique has been determined in advance. Supported interactions are filtering on task x-axis values and comparison between two groups. The test scenario utilized data on the number of steps, and filtering for the x-axis period was shown as a bar graph, and a comparison between the two groups was shown as a line graph. In order to develop a natural language processing model that can receive requested information through visualization, about 15,800 training data were collected through a survey of 1,000 people. As a result of algorithm development and performance evaluation, about 89% accuracy in classification model and 99% accuracy in query generation model was obtained.

Automated-Database Tuning System With Knowledge-based Reasoning Engine (지식 기반 추론 엔진을 이용한 자동화된 데이터베이스 튜닝 시스템)

  • Gang, Seung-Seok;Lee, Dong-Joo;Jeong, Ok-Ran;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06a
    • /
    • pp.17-18
    • /
    • 2007
  • 데이터베이스 튜닝은 일반적으로 데이터베이스 어플리케이션을 "좀 더 빠르게" 실행하게 하는 일련의 활동을 뜻한다[1]. 데이터베이스 관리자가 튜닝에 필요한 주먹구구식 룰(Rule of thumb)들을 모두 파악 하고 상황에 맞추어 적용하는 것은 비싼 비용과 오랜 시간을 요구한다. 그렇게 때문에 서로 다른 어플 리케이션들이 맞물려 있는 복잡한 서비스는 필수적으로 자동화된 데이터베이스 성능 관리와 튜닝을 필 요로 한다. 본 논문에서는 이를 해결하기 위하여 지식 도매인(Knowledge Domain)을 기초로 한 자동화 된 데이터베이스 튜닝 원칙(Tuning Principle)을 제시하는 시스템을 제안한다. 각각의 데이터베이스 튜닝 이론들은 지식 도매인의 지식으로 활용되며, 성능에 영향을 미치는 요소들을 개체(Object)와 콘셉트 (Concept)로 구성하고 추론 시스템을 통해 튜닝 원칙을 추론하여 쉽고 빠르게 현재 상황에 맞는 튜닝 방법론을 적용시킬 수 있다. 자동화된 데이터베이스 튜닝에 대해 여러 분야에 걸쳐 학문적인 연구가 이루어지고 있다. 그 예로써 Microsoft의 AutoAdmin Project[2], Oracle의 SQL 튜닝 아키텍처[3], COLT[4], DBA Companion[5], SQUASH[6] 등을 들 수 있다. 이러한 최적화 기법들을 각각의 기능적인 방법론에 따라 다시 분류하면 크게 Design Tuning, Logical Structure Tuning, Sentence Tuning, SQL Tuning, Server Tuning, System/Network Tuning으로 나누어 볼 수 있다. 이 중 SQL Tuning 등은 수치적으로 결정되어 이미 존재하는 정보를 이용하기 때문에 구조화된 모델로 표현하기 쉽고 사용자의 다양한 요구에 의해 변화하는 조건들을 수용하기 쉽기 때문에 이에 중점을 두고 성능 문제를 해결하는 데 초점을 맞추었다. 데이터베이스 시스템의 일련의 처리 과정에 따라 DBMS를 구성하는 개체들과 속성, 그리고 연관 관계들이 모델링된다. 데이터베이스 시스템은 Application / Query / DBMS Level의 3개 레벨에 따라 구조화되며, 본 논문에서는 개체, 속성, 연관 관계 및 데이터베이스 튜닝에 사용되는 Rule of thumb들을 분석하여 튜닝 원칙을 포함한 지식의 형태로 변환하였다. 튜닝 원칙은 데이터베이스 시스템에서 발생하는 문제를 해결할 수 있게 하는 일종의 황금률로써 지식 도매인의 바탕이 되는 사실(Fact)과 룰(Rule) 로써 표현된다. Fact는 모델링된 시스템을 지식 도매인의 하나의 지식 개체로 표현하는 방식이고, Rule 은 Fact에 기반을 두어 튜닝 원칙을 지식의 형태로 표현한 것이다. Rule은 다시 시스템 모델링을 통해 사전에 정의되는 Rule와 튜닝 원칙을 추론하기 위해 사용되는 Rule의 두 가지 타업으로 나뉘며, 대부분의 Rule은 입력되는 값에 따라 다른 솔루션을 취하게 하는 분기의 역할을 수행한다. 사용자는 제한적으로 자동 생성된 Fact와 Rule을 통해 튜닝 원칙을 추론하여 데이터베이스 시스템에 적용할 수 있으며, 요구나 필요에 따라 GUI를 통해 상황에 맞는 Fact와 Rule을 수동으로 추가할 수도 었다. 지식 도매인에서 튜닝 원칙을 추론하기 위해 JAVA 기반의 추론 엔진인 JESS가 사용된다. JESS는 스크립트 언어를 사용하는 전문가 시스템[7]으로 선언적 룰(Declarative Rule)을 이용하여 지식을 표현 하고 추론을 수행하는 추론 엔진의 한 종류이다. JESS의 지식 표현 방식은 튜닝 원칙을 쉽게 표현하고 수용할 수 있는 구조를 가지고 있으며 작은 크기와 빠른 추론 성능을 가지기 때문에 실시간으로 처리 되는 어플리케이션 튜닝에 적합하다. 지식 기반 모률의 가장 큰 역할은 주어진 데이터베이스 시스템의 모델을 통하여 필요한 새로운 지식을 생성하고 저장하는 것이다. 이를 위하여 Fact와 Rule은 지식 표현 의 기본 단위인 트리플(Triple)의 형태로 표현된다, 트리플은 Subject, Property, Object의 3가지 요소로 구성되며, 대부분의 Fact와 Rule들은 트리플의 기본 형태 또는 트리플의 조합으로 이루어진 C Condition과 Action의 두 부분의 결합으로 구성된다. 이와 같이 데이터베이스 시스템 모델의 개체들과 속성, 그리고 연관 관계들을 표현함으로써 지식들이 추론 엔진의 Fact와 Rule로 기능할 수 있다. 본 시스템에서는 이를 구현 및 실험하기 위하여 웹 기반 서버-클라이언트 시스템을 가정하였다. 서버는 Process Controller, Parser, Rule Database, JESS Reasoning Engine으로 구성 되 어 있으며, 클라이 언트는 Rule Manager Interface와 Result Viewer로 구성되어 었다. 실험을 통해 얻어지는 튜닝 원칙 적용 전후의 실행 시간 측정 등 데이터베이스 시스템 성능 척도를 비교함으로써 시스템의 효용을 판단하였으며, 실험 결과 적용 전에 비하여 튜닝 원칙을 적용한 경우 최대 1초 미만의 전처리에 따른 부하 시간 추가와 최소 약 1.5배에서 최대 약 3배까지의 처리 시간 개선을 확인하였다. 본 논문에서 제안하는 시스템은 튜닝 원칙을 자동으로 생성하고 지식 형태로 변형시킴으로써 새로운 튜닝 원칙을 파생하여 제공하고, 성능에 영향을 미치는 요소와 함께 직접 Fact과 Rule을 추가함으로써 커스터마이정된 튜닝을 수행할 수 있게 하는 장점을 가진다. 추후 쿼리 자체의 튜닝 및 인텍스 최적화 등의 프로세스 자동화와 Rule을 효율적으로 정의하고 추가하는 방법 그리고 시스템 모델링을 효과적으로 구성하는 방법에 대한 연구를 통해 본 연구를 더욱 개선시킬 수 있을 것이다.

  • PDF