• Title/Summary/Keyword: SPLP

Search Result 17, Processing Time 0.018 seconds

Studies on the Computer Programming for Searching the Simple Paths and Its Applications(Summary) (단순경로탐색(單純經路探索)의 프로그래밍 및 그 응용(應用)에 관(關)한 연구(硏究)(선합(線合)))

  • Jeong, Su-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.11 no.2
    • /
    • pp.10-17
    • /
    • 1983
  • The former paper (Part I) studies two methods for searching and determining the simple paths in an acyclic or a cyclic network. The two methods are computer programmed as subroutines (SPLP1 and SPLP2) for various use. And a few examples of its applications are discussed Another paper (Par II) studies the reliability computation for a network by using the Event Space Methods. A computer program is developed for the computation by applying the SPLP2 subroutine subprogram. In this paper the former results are summarized with another computer program for reliability computation by using the Path Tracing Methods. The two subroutines appear in the Appendix as reference for others. The programs can be used in the reliability computation of reducible and irreducible structure networks.

  • PDF

Evidence Suggesting that the Deposition of Pigments into Yolks is Independent of Egg Production: Enhanced Pigmentation of Yolks by Feeding Hens with Canthaxanthin Biosynthesized by Microbials (난황 내 색소의 축적은 산란율과 무관함을 제시하는 증거: 균체가 생성하는 Canthaxanthin의 급여에 의해 강화된 난황의 착색)

  • Kim, Ji-Min;Kim, Jong-Jin;Lee, Shi-Hyoung;Choi, Yang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.239-245
    • /
    • 2011
  • Pigments in the diet affect yolk colors. Due to variations in both the bioavailability of pigments in chickens and their amounts occurring in the feed ingredients, concern about egg quality arises in terms of yolk color. In this study, the effects of pigments, produced through cell culture in the laboratory, on yolk colors were determined for 4 weeks in laying hens receiving one of the 6 dietary treatments: control diets containing 1) no synthetic pigments (CON); 2) canthaxanthin (4 ppm) purchased from BASF (BASF); 3) cultured cells so that the diet had canthaxanthin at 4 ppm (CX); 4) cultured cells so that the diet had lycopene at 30 ppm (LP); 5) canthaxanthin (4 ppm) that was purified from cultured cells (SPCX); or 6) lycopene (30 ppm) that was purified from cultured cells. Relation between deposition of pigments into yolks and egg production was also tested. Yolk color of eggs from chickens fed dietary CX was significantly enhanced, which was slightly but significantly below that of BASF. Results from other treatments were lower than those of CX. Deposit rates of pigments into yolks were: BASF > CX > SPCX > LP > SPLP. The amounts of pigments, with the exception of SPLP, in feed were not changed during the storage for 4 weeks at $25^{\circ}C$. Egg production rates varied among treatments during the initial phase of the study but became relatively uniform at the later stage, except for CON and LP groups. The results of the present study indicate that the deposition of pigments into yolks is independent of egg production.

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar (철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화)

  • Choi, Yu-Lim;Kim, Dong-Su;Kang, Tae-Jun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.247-257
    • /
    • 2021
  • In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.

Assessment of Soil Stabilization forthe Reduction of Environmental Risk of Lead-contaminated Soil Near a Smelter Site (제련소 주변 납 오염 현장토양의 위해성 저감을 위한 토양 안정화 평가)

  • Yeo, In-Hong;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.215-224
    • /
    • 2021
  • In this study, to investigate the effect of stabilization of Pb-contaminated soil near a smelter site for the reduction of environmental risk of Pb leaching, commercial stabilizers were amended with the Pb-contaminated soil and evaluated leaching characteristics of Pb in soil by TCLP and SPLP leaching test. Also, performing sequential extraction procedure speciation of Pb in the amended soil was investigated. Limestone, AC-2 (Amron), Metafix (Peroxychem) that possess stabilization performance towards heavy metal in soil and mass production is available were selected as candidates. AC-2 contained a CaCO3 and MgO crystalline phase, while Metafix had a Fe7S8 crystalline phase, according to XRD studies. Pb content in SPLP extract was lower than the South Korean drinking water standard for Pb in groundwater at 4% AC-2 and Metafix treatment soil, and TCLP-based stabilization effectiveness was more than 90%. The findings of the sequential extraction method of soil treated with Metafix revealed that fractions 1 and 2 of Pb, which correspond to relatively high mobility and bioavailable fractions, were lowered, while the residual fraction (fraction 5) was raised. As a consequence, the order of performance for Pb stabilization in polluted soil was Metafix>AC-2>limestone.

LEACHING OF LEAD FROM DISCARDED NOTEBOOK COMPUTERS USING THE SCALE-UP TCLP AND OTHER STANDARD LEACHING TESTS

  • Jang, Yong-Chul;Townsend, Timothy G.
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.14-27
    • /
    • 2006
  • The proper management of discarded electronic devices (often called electronic-waste) is an emerging issue for solid waste professionals throughout the world because of the large growth of the waste stream, and the content of toxic metals in them, most notably heavy metals such as lead. Notebook computers are becoming one of the major components of discarded computer devices and will continue to increase in the waste stream in the future. While the computers hold great promise for recycling, a substantial amount of this waste is often disposed in municipal solid waste (MSW) landfills. The toxicity characteristic leaching procedure (TCLP) is commonly used to simulate worse case leaching conditions where a potentially hazardous waste is assumed to be disposed along with municipal solid waste in a landfill with actively decomposing materials overlying an aquifer. The objective of this study was to examine leaching potential of lead from discarded notebook computers using the scale-up TCLP, other standard leaching tests such as California waste extraction test (Cal WET), and the synthetic precipitation leaching procedure (SPLP) and actual landfill leachates as leaching solution. The scale-up TCLP is a modified TCLP (where the device was disassembled and leached in or near entirety) to meet the intent of the TCLP. The results showed that the scale-up TCLP resulted in relatively high lead found in the leachate with an average of 23.3 mg/L. The average level was less than those by the standard TCLP and WET (37.0 mg/L and 86.0 mg/L, respectively), but much greater than those by the SPLP and the extractions with the landfill leachates (0.55 mg/L and 1.47 mg/L, respectively). The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead were identified as major factors that controlled the amount of lead leached from notebook computers. Based on the results obtained by a number of leaching tests in this study, notebook computers may present a potential leaching risk to the environment and human health upon land disposal. However, further investigation is still needed to assess the true risk posed by the land disposal of discarded notebook computers.

Risk Mitigation Measures in Arsenic-contaminated Soil at the Forest Area Near the Former Janghang Smelter Site: Applicability of Stabilization Technique and Follow-up Management Plan ((구)장항제련소 주변 송림숲 등 식생지역에서의 비소오염토양 위해도 저감 조치: 안정화 공법 적용성 평가 및 사후관리 계획)

  • An, Jinsung;Yang, Kyung;Kang, Woojae;Lee, Jung Sun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.1-11
    • /
    • 2017
  • This study was conducted to investigate the performance of four commercial chemical agents in stabilizing arsenic (As) in soil at the forest area near the former Janghang smelter site. After amending the stabilizing agents (A, B, C, and D) into As-contaminated soil samples, synthetic precipitation leaching procedure (SPLP) and solubility bioavailability research consortium (SBRC)-extractable As concentrations significantly decreased except for agent D, which is mainly composed of fly ash and calcium carbonate. Increase of SPLP and SBRC-extractable As concentrations in four soil samples (S1, S2, S3, and J2) was attributed to desorption of As adsorbed on iron oxides due to high pH generated by agent D. It is therefore necessary to consider application conditions according to soil characteristics such as pH and buffering capacity. Results of sequential extraction showed that readily extractable fractions of As in soil (i.e., sum of $SO_4-$ and $PO_4-extractable$ As in soil) were converted into non-readily extractable fractions by amending agents A, B, and C. Such changes in the As distribution in soil resulted in the decrease of SPLP and SBRC-extractable As concentration. A series of follow-up monitoring and management plan has been suggested to assess the longevity of the stabilization treatments in the site.

Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil (비소 오염토양의 안정화를 위한 나노 Fe° 담지 바이오차 적용 연구)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Joo, Wan-Ho;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.350-362
    • /
    • 2020
  • In this study, nano Fe°-impregnated biochar (INPBC) was prepared using pruning residues and one-pot synthetic method and evaluated its performance as an amendment agent for the stabilization of arsenic-contaminated soil. For the preparation of INPBC, the mixture of pruning residue and Fe (III) solution was heated to 220℃ for 3hr in a teflon-sealed autoclave followed by calcination at 600℃ under N2 atmosphere for 1hr. As-prepared INPBC was characterized using FT-IR, XRD, BET, SEM. For the stabilization test of as-prepared INPBC, As-contaminated soils (Soil-E and Soil-S) sampled from agricultural sites located respectively near E-abandoned mine and S-abandoned mine in South Korea were mixed with different of dosage of INPBC and cultivated for 4 weeks. After treatment, TCLP and SPLP tests were conducted to determine the stabilization efficiency of As in soil and showed that the stabilization efficiency was increased with increasing the INPBC dosage and the concentration of As in SPLP extractant of Soil-E was lower than the drinking water standard level of Ministry of Environment of South Korea. The sequential fractionation of As in the stabilized soils indicated that the fractions of As in the 1st and 2nd stages that correspond liable and known as bioavailable fraction were decreased and the fractions of As in 3rd and 4th stages that correspond relatively non-liable fraction were increased. Such a stabilization of As shows that the abundant nano Fe° on the surface of INPBC mixed with As-contaminated soils played the co-precipitation of As leaching from soil by surface complexation with iron. The results of this study may imply that INPBC as a promising amendments for the stabilization of As-contaminated soil play an important role.

Characterization and Feasibility Study of the Soil Washing Process Applying to the Soil Having High Uranium Concentration in Korea (우라늄 함량이 높은 국내 토양에 대한 토양학적 특성 규명 및 토양세척법의 적용성 평가)

  • Chang, See-Un;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.8-19
    • /
    • 2008
  • The physicochemical properties of soils having high uranium content, located around Duckpyungri in Korea, were investigated and the lab scale soil washing experiments to remove uranium from the soil were preformed with several washing solutions and on various washing conditions. SPLP (Synthetic Precipitation Leaching Procedure), TCLP (Toxicity Characteristic Leaching Procedure), and SEP (Sequential Extraction Procedure) for the soil were conducted and the uranium concentration of the extracted solution in SPLP was higher than Drinking Water Limit of USEPA (30 ${\mu}g$/L), suggesting that the continuous dissolution of uranium from soil by the weak acid rain may generate the environmental pollution around the research area. For the soil washing experiments, the uranium removal efficiency of pH 1 solution for S2 soil was about 80 %, but dramatically decreased as pH of solution was > 2, suggesting that strong acidic solutions are available to remove uranium from the soil. For solutions with 0.1M of HCl and 0.05 M of ${H_2}{SO_4}$, their removal efficiencies at 1 : 1 of soil vs. washing solution ratio were higher than 70%, but the removal efficiencies of acetic acid, and EDTA were below 30%. At 1 : 3 of soil vs. solution, the uranium removal efficiencies of 0.1M HCl, 0.05 M ${H_2}{SO_4}$, and 0.5M citric acid solution increased to 88%, 100%, and 61% respectively. On appropriate washing conditions for S2 soil such as 1 : 3 ratio for the soil vs. solution ratio, 30 minute for washing time, and 2 times continuous washing, TOC (Total Organic Contents) and CEC (Cation Exchange Capacity) for S2 soil were measured before/after soil washing and their XRD (X-Ray Diffraction) and XRF (X-Ray Fluorescence) results were also compared to investigate the change of soil properties after soil washing. TOC and CEC decreased by 55% and 66%, compared to those initial values of S2 soil, suggesting that the soil reclaimant may need to improve the washed soils for the cultivated plants. Results of XRF and XRD showed that the structural change of soil after soil washing was insignificant and the washed soil will be partially used for the further purpose.