• Title/Summary/Keyword: SPIN EFFECT

Search Result 740, Processing Time 0.03 seconds

Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_20_5 (YBaCo_20_5 화합물에서의 구조변형에 의한 전하, 궤도, 스핀상태 전이 연구)

  • Se Kyun Kwon;Jin Ho Park;Byung II Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.461-461
    • /
    • 2000
  • We have investigated electronic structuresof antiferromagnetic YBaCo_2O_5 using the local spin-density approximation (LSDA) + U method. The charge and orbital ordered insulating ground state is correctly obtained with the strong on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the high spin (HS) and intermediate spin (IS) state, respectively. The tetragonal to orthorhombic structural transition is responsible for the ordering phenomena and the spin states of Co ions. The large contribution of the orbital moment to the total magnetic moment indicates that the effect of the spin-orbit coupling is very important in YBaCo_2O_5.

  • PDF

Effect of Spin Coating Speed on Characteristics of Polyimide Alignment Layer for Liquid Crystal Display (스핀 코팅 공정에 따른 액정디스플레이용 폴리이미드 배향막 특성 분석)

  • Kim, Jin-Ah;Choi, Se-Hoon;Park, Hong-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • The field of liquid crystal display (LCD) is constantly in the spotlight and the process of depositing an alignment layer in the LCD manufacturing process is very important to obtain excellent performance such as low-power driving and high-speed response to improve LCD performance. Therefore, research on liquid crystal (LC) alignment is being actively conducted. When manufacturing LCD, it is necessary to consider the effect of the alignment layer thickness as one of the factors affecting various LCD performances. In addition, previous studies confirmed the LC alignment characteristics correlate with the rotation speed in the spin coating process. Therefore, the electro-optical properties of the LCD were investigated by manufacturing a polyimide alignment layer by varying the rotation speed in the spin coating process in this study. It was confirmed that the thickness of the polyimide alignment layer was controlled according to the spin coating conditions. The average transmittances of anti-parallel LC cells at the spin coating speed of 2,500 rpm and 3,000 rpm are about 60%, which indicates that the LC cell has relatively higher performance. At the spin coating speed of 3,000 rpm, the voltage-transmittance curve of twisted nematic (TN) LC cell was below 1.5 V, which means that the TN LC cell operated at a low power. In addition, high-speed operating characteristics were confirmed with a response time of less than 30 ms. From these derived data, we confirmed that the ideal spin coating speed is 3,000 rpm. And these results provide an optimized polyimide alignment layer process when considering enhanced future LCD manufacturing.

Range Simulation on Spin Effort of golfball (골프공 스핀효과에 따른 비거리 시뮬레이션)

  • Han, Tae-Jong;Kim, Yong-Sun;Lee, Soon-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.117-131
    • /
    • 2003
  • This study simulated the range of golf ball with different projection angles using a drive swing condition. For the simulation purpose, the differential equation of dynamics was induced by using Bernoulli's principle and average back spin frequency, instant velocity, and dimple of golf ball from amateur group, professional group, and Tiger Woods were chosen as the initial condition. The study result indicated that lift coefficient($C_{lift}$) relative to drag coefficient ($C_d$), 0.3 of differential equation was applied differently in terms of back spin Sequency, and when $C_{lift}$ was 0.4 for amateur, 0.5 for professional, and 0.7 for Tiger Woods the projection ranges of ball were closely matched with initial condition. With selected $C_{lift}$ and back spin frequency of initial condition, the ranges with different projection angle was measured as 193m ($13-17^{\circ}$) for amateur, 240m ($9-13^{\circ}$), professional and 273m ($9^{\circ}$)Tiger Woods, respectively. For the range in terms of back spin frequency and projection angle, the amateur group indicated relatively high spin frequency (70 RPS) and showed the maximal range (195m) with $13^{\circ}$ of projection angle. The tendency of longer range with higher projection angle was also found under the different conditions of spin frequency in this group. The professional group showed their maximal range (245m) with conditions of 60RPS of spin frequency and $9^{\circ}$ of projection angle. Their range was decreased dramatically when the spin frequency was reduced to 40-50 RPS. For Tiger Woods, the maximal range was found with 40RPS of spin frequency and the range was decreased notably when the spin frequency was above 40RPS.

Regulation of SPIN90 by Cell Adhesion and ERK Activation

  • Kim Sung Hyun;Kim Dae Joong;Song Woo Keun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.141-146
    • /
    • 2004
  • SPIN90 was identified to farm molecular complex with $\betaPIX$, WASP and Nck. This complex shows that SPIN90 interacts with Nck in a manner dependent upon cell adhesion to extracellular matrix, but $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex was stable even in suspended cells. This suggests that SPIN90 serves as an adaptor molecule to recruit other proteins to Nck at focal adhesions. SPIN90 was phosphorylated by ERK1, which was, itself, activated by cell adhesion and platelet-derived growth factor. Such phosphorylation of SPIN90 likely promotes the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex and Nck. It thus appears that the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex with Nck is crucial for stable cell adhesion and can be dynamically modulated by SPIN90 phosphorylation that is dependent on cell adhesion and ERX activation. SPIN90 directly binds syndapin I, syndapin isoform II-1 and II-s via its PRD region in vitro, in vivo and also associates with endocytosis core components such as clathrin and dynamin. In neuron and fibroblast, SPIN90 colocalizes with syndapins as puntate form, consistent with a role for SPIN90 in clathrin-mediated endocytosis pathway. Overexpression of SPIN90 N-term inhibits receptor-mediated endocytosis. Interestingly, SPIN90 PRD, binding interface of syndapin, significantly blocks internalization of transferrin, demonstrating SPIN90 involvement in endocytosis in vivo by interacting syndapin. Depletion of endogenous SPIN90 by introducing $\alpha-SPIN90$ also blocks receptor-mediated endocytosis. Actin polymerization could generate farce facilitating the pinch-out event in endocytosis, detach newly formed endocytic vesicle from the plasma membrane or push out them via the cytosol on actin tails. Here we found that SPIN90 localizes to high actin turn over cortical area, actin-membrane interface and membrane ruffle in PDGF treated cells. Overexpression of SPIN90 has an effect on cortical actin rearrangement as filopodia induction and it is mediated by the Arp2/3 complex at cell periphery. Consistent with a role in actin organization, CFP-SPIN90 present in actin comet tail generated by PIP5 $kinase\gamma$ overexpression. Therefore this study suggests that SPIN90 is functional linker between endocytosis and actin cytoskeleton.

  • PDF

DIRCM Jamming Effect Analysis of Spin-Scan Reticle Seeker (스핀스캔 레티클 탐색기의 DIRCM 재밍효과 분석)

  • Ahn, Sang-Ho;Kim, Young-Choon;Lee, Kwang-Sei;Kim, Ki-Hong;Kim, Sung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.776-784
    • /
    • 2009
  • The function of DIRCM(Directed Infrared Countermeasures) jamming is to cause the missile to miss its intended target by disturbing the seeker tracking process. The DIRCM jamming uses the pulsing flashes of IR energy and its frequency, phase and intensity have influence on the missile guidance system. In this paper, we analysis the DIRCM jamming effect of spin-scan reticle seeker. Simulation results show that the jamming effect is greatly influenced by frequency, phase and intensity of the jammer signal.