KSCE Journal of Civil and Environmental Engineering Research
/
v.37
no.4
/
pp.669-680
/
2017
This study evaluated the consistency of the standard flow to forecast low-flow based on various drought indices. The data used in this study were streamflow data at the Gurye2 station located in the Seomjin River and the Angang station located in the Hyeongsan River, as well as rainfall data of nearby weather stations (Namwon and Pohang). Using streamflow data, the streamflow accumulation drought index (SADI) was developed in this study to represent the hydrological drought condition. For SADI calculations, the threshold of drought was determined by a Change-Point analysis of the flow pattern and a reduction factor was estimated based on the kernel density function. Standardized runoff index (SRI) and standardized precipitation index (SPI) were also calculated to compared with the SADI. SRI and SPI were calculated for the 30-, 90-, 180-, and 270-day period and then an ROC curve analysis was performed to determine the appropriate time-period which has the highest consistency with the standard flow. The result of ROC curve analysis indicated that for the Seomjin River-Gurye2 station SADI_C3, SRI30, SADI_C1, SADI_C2, and SPI90 were confirmed in oder of having high consistency with standard flow under the attention stage and for the Hyeongsan River-Angang station, SADI_C3, SADI_C1, SPI270, SRI30, and SADI_C2 have order of high consistency with standard flow under the attention stage.
The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.
South Korea has been undergoing spring drought periodically and diverse researches using vegetation index have been carried out to monitor spring droughts. The strength of the vegetation index-based drought monitoring is that the monitoring method enables efficient spatio-temporal grasp of changes in drought events. According to the development of low resolution satellite images such as MODIS, which are characterized by outstanding temporal resolution, the use of the method is expected to increase. Drought analysis using vegetation index considered only meteorological factor as a cause that affects vitality of vegetation. But many indirect and direct factors affect vegetation stress, So many uncertainties are involved in such method of analysis. To secure objectivity of drought analysis that uses vegetation index it is therefore necessary to compare the method with most representative drought analysis tools that are used for drought management. In this study, PDSI and SPI which a meteorological drought index that quantifies drought and that is used as a basic index for drought monitoring and MODIS NDVI are compared to propose correlation among them and to show usefulness of drought assessment that uses vegetation index. This study shows changing patterns of NDVI and SPI 6-month are similar and correlation between NDVI and SPI was highest in inland vegetation cover.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.38-38
/
2020
SPI지수는 강수량이 감소하기 시작하면 필요한 물수요에 비해서 상대적으로 물부족을 유발하게 되고, 가뭄발생의 발단이 된다는 것에 착안하여 개발된 지수이다. 하지만 다른 가뭄지수와 마찬가지로 강수량 또는 유출량 시계열을 상대적인 표준정규분포로 산정하였기 때문에 인근 지역에 비해 상대적으로 강수량이 많은 지역도 실제로 발생하지 않은 가뭄이 발생한다고 분석이 된다. 이러한 현상을 완화시키기 위해 수정된 가뭄분석 기법이 요구된다. 이에 Jeung et. al(2019)은 이런 현상을 완화시키기 위해 SPI지수 계산과정에서 해당지점의 시계열을 대상으로 계산되는 Gamma 분포를 전국으로 확장 시켜 산정 후 표준정규분포에 적용하여 가뭄지수를 산정하였다. 또한 과거 제한급수가 발생했던 지역을 대상으로 극한가뭄과 가뭄지속기간을 이용하여 M-SPI지수의 효용성을 확인한 결과, 제한급수 실시년도와 SPI, M-SPI 결과와의 비교결과 과거 가뭄을 정확하게 모사하는 것을 확인하였다. 하지만 M-SPI는 전국을 하나의 지역으로 가정하여 산정하였고, 증발산량과, 고도 등 지형의 특성을 고려하지 않았기 때문에 일부의 가뭄사상을 재현하지 못하였다. 이에 본 연구에서는 기상학적 인자와, 지형학적 인자를 고려하여 지역화를 하고, 각 지역별로 대표 확률분포를 산정하여 가뭄지수를 산정하고자 한다. 또한 한국 기상청에서 제공하고 있는 국가 표준기후변화 시나리오를 수집하여 M-SPI에 적용하여 미래 극한 가뭄빈도의 변화를 전망하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.330-330
/
2021
본 연구에서는 새롭게 개발 중인 SSP 시나리오의 일단위 강수량과 온도 자료를 활용하여 청미천 유역의 미래 가뭄의 예측 및 분석을 실시하였다. SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 따른 새롭게 개발 중인 CMIP6 (Coupled Model Intercomparison Project) GCM (General Circulation Models) 중 ACCESS-ESM1.5(Australian Community Climate and Earth System Simulator model)를 이용하였다. GCM 자료는 Quantile Mapping 방법을 사용하여 편이보정 되었고, 유출분석은 SWAT(Soil and Water Assessment Tool) 모형을 사용하여 청미천 유역에 대해 수행하였다. 청미천 유역의 가뭄분석을 위해 기상학적 가뭄지수인 SPI(Standardized Precipitation Index)와 SPEI(Standardized Precipitation Evapotranspiration Index), 수문학적 가뭄지수인 SDI(Standardized Streamflow Index)를 산정하였다. 그 후, 시간에 따른 가뭄의 특성을 분석하기 위해 가까운 미래 (2025-2064)와 먼 미래 (2065-2100) 로 구분하여 분석을 진행하였다. 그 결과, 청미천 유역의 가뭄 발생은 SSP시나리오, 가뭄지수에 따라 차이점을 확인할 수 있었다. SSP 시나리오의 경우 SSP5-8.5에서 가장 심각한 가뭄이 발생하였다. 가뭄지수의 경우 강수만을 고려한 SPI는 먼 미래에 비해 가까운 미래에서 더욱 심각한 가뭄이 발생하였다. SDI의 경우 강수량의 변동이 일반적으로 하천의 흐름에 영향을 미치기에 SPI와 비슷한 양상을 나타내었다. SPEI의 경우 시간에 따른 기온상승으로 먼 미래에 심각한 가뭄이 발생하였다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.4
/
pp.1117-1123
/
2014
Water is a necessary condition of plants, animals and human. The state of the water shortage, that drought is globally one of the most feared disasters. This study was calculated target standardized precipitation index with unit of region for judgment and preparation of drought in consideration of the regional characteristics. First of all, Standardized Precipitation Index (3) were calculated by monthly rainfall data from rainfall data more than 30 years of 88 stations. Parametric frequency and nonparametric frequency using boundary kernel density function were analysed using annual minimum data that were extracted from calculated SPI (3). Also, Target return period sets up 30 year and target SPI analysed unit of region using thiessen by result of nonparametric frequency. Analyzed result, Drought was entirely different from severity and frequency by region. This study results will contribute to a national water resources plan and disaster prevention measures with data foundation for judgment and preparation of drought in korea.
Journal of The Korean Society of Agricultural Engineers
/
v.60
no.4
/
pp.73-82
/
2018
In this study, we assessed meteorological and agricultural drought based on the SPI(Standardized Precipitation Index), SMP(Soil Moisture Percentile), and SMDI(Soil Moisture Deficit Index) indices using satellite-based TRMM(Tropical Rainfall Measuring Mission)/GPM(Global Precipitation Measurement) images at the province of Chungcheongbuk-do. The long-term(2000-2015) TRMM/GPM precipitation data were used to estimate the SPI values. Then, we estimated the spatially-/temporally-distributed soil moisture values based on the near-surface soil moisture data assimilation scheme using the TRMM/GPM and MODIS(MODerate resolution Imaging Spectroradiometer) images. Overall, the SPI value was significantly affected by the precipitation at the study region, while both the precipitation and land surface condition have influences on the SMP and SMDI values. But the SMP index showed the relatively extreme wet/dry conditions compared to SPI and SMDI, because SMP only calculates the percentage of current wetness condition without considering the impacts of past wetness condition. Considering that different drought indices have their own advantages and disadvantages, the SMDI index could be useful for evaluating agricultural drought and establishing efficient water management plans.
Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
Journal of Korea Water Resources Association
/
v.56
no.8
/
pp.509-520
/
2023
Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.28-28
/
2011
치수는 고대국가로부터 현재의 국가에 이르기까지 중차대한 국가사업이다. 근대를 지나면서 산업화가 가속화되었고 수자원의 사용과 관리는 더욱 세분화 되었다. 또한 수자원의 사용과 관리에 앞서 기후와 밀접한 관계가 있는 수자원의 물리적 특성을 분석하는 연구가 활발히 이루어지고 있다. 최근 우리나라도 급격한 산업화로 인한 환경파괴와 지구온난화로 인한 강수의 편중이 더욱 심해지고 있다. 즉, 한반도도 전 세계가 직면한 기후변화로 인한 자연재해로 부터 안전하지 않다는 것을 의미한다. 특히 수자원을 관리함에 있어 가뭄의 경우에는 장기적으로 진행되는 경우가 많고 피해 규모와 복구 등도 가뭄의 진행 기간과 밀접한 관계를 가지므로 적극적인 대비가 필요하다. 따라서 가뭄을 연구함에 앞서 과거 한반도의 가뭄의 경향성 및 주기성 같은 특성을 분석할 수 있는 연구가 수반되어야 할 것으로 사료된다. 이에 따라 본 논문에서는 과거 한반도 가뭄 사상의 특성분석을 위해 대표 가뭄지수로 SPI(Standardized Precipitation Index)와 PDSI(Palmer Drought Severity Index)를 선정하여 우리나라 전역에 위치한 총 59개 기상관측소의 1980년~2009년까지의 기상자료를 수집하여 유역별 월평균 가뭄지수를 산정하였다. 또한 이를 이용하여 가뭄발생의 경향성 및 주기성을 중심으로 과거한반도 가뭄의 통계학적 특성분석을 실시하였다. 각 지수의 경향성을 분석한 결과, SPI3와 SPI6는 봄과 겨울에는 가뭄이 심화되는 경향을 보였고 여름철에는 가뭄이 완화되는 경향을 보였다. 반면 SPI12의 경우는 섬진강과 영산강은 유의하지는 않으나 전 기간에 걸쳐 가뭄이 심화되는 경향을 보였고 한강, 낙동강, 금강유역은 가뭄이 완화되는 것으로 나타났다. PDSI의 경우에는 SPI와는 반대로 섬진강과 영산강은 전 기간에 걸쳐 가뭄이 완화되는 경향을 보였고 한강, 낙동강, 금강유역은 유의한 수준에서 가뭄이 심화되는 경향을 보임으로써, SPI와 PDSI에 의한 가뭄평가 경향성이 유역별로 다소 다르게 나타나는 것을 확인할 수 있었다. 한편, 각 유역의 주기성을 분석한 결과로는 모든 유역에서 1년~3년 또는 6년 이하의 주기성을 나타냈으며, SPI의 경우 지속기간이 길어질수록 6년 이상의 저빈도 주기성을 나타냈고, SPI3는 짧게는 1년 미만의 고빈도 주기를 보이는 경우도 있었으며, SPI6와 SPI12는 4년~6년 주기를 나타냈다. 또한 PDSI도 마찬가지로 6년 내외의 장주기를 보였다. 특히 유역별로 분석할 경우 남부지역의 가뭄발생 주기가 중부지역보다 길게 나타나는 성향을 보였다. 그리고 SPI와 PDSI, 두 가뭄지수의 공통주기를 분석한 결과에서는 상관관계가 적은 것으로 확인 되었다.
Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Yoon, Dong-Hyun
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.289-289
/
2022
최근 기후변화의 영향으로 인해 가뭄과 같은 자연재해의 발생빈도가 증가하고 있다. 가뭄은 지속 기간이 길고 정량적인 피해 규모 및 심도 파악이 어려우며, 사회, 경제적 피해와 함께 농업 시스템 전반에 심각한 영향을 줄 수 있는 재해이다. 국내 가뭄 발생 경향은 2000년 이후 급증하고 있으며, 2015년 및 2017년의 경우 이례적인 극심한 가뭄이 발생하는 등 2000년 이전과는 다른 경향을 보이고 있다. 따라서, 미래 기후변화에 따른 국내 가뭄 발생에 대비하기 위해서는 장기적인 가뭄 전망이 요구된다. CMIP6 (Coupled Model Intercomparison Project 6)에 의해 개발된 공통사회경제경로 SSP (Shared Socio-economic Pathways) 시나리오는 사회 및 경제적 요소를 내포하여 미래의 완화 및 적응 기반 기후변화 시나리오로 정의된다. 본 연구에서는 SSP 시나리오를 활용하여 미래 강수자료를 구축하여 기상학적 가뭄지수, SPI (Standaridzed Precipitation Index)를 산정하고 가뭄 특성을 분석하고자 한다. 강수자료의 경우 국내 ASOS (Automated Synoptic Observing System) 기상관측소 기준 56개소를 대상으로 1973년부터 2021년까지 49개년 자료를 수집하였으며, SSP 시나리오와 SPI를 활용하여 국내 지역을 대상으로 미래 기후변화에 따른 가뭄 전망을 수행하고자 한다. SPI는 시간척도에 따라 3개월, 6개월, 9개월, 12개월 시간척도를 적용하고, SSP 시나리오의 경우 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 시나리오를 적용하여 미래 기후변화 시나리오별 가뭄을 분석하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.