DOI QR코드

DOI QR Code

A Study on Target Standardized Precipitation Index in Korea

한반도 목표 표준강수지수(SPI) 산정에 관한 연구

  • 김민석 (서울시립대학교 토목공학과) ;
  • 문영일 (서울시립대학교 토목공학과)
  • Received : 2013.10.29
  • Accepted : 2014.04.26
  • Published : 2014.08.01

Abstract

Water is a necessary condition of plants, animals and human. The state of the water shortage, that drought is globally one of the most feared disasters. This study was calculated target standardized precipitation index with unit of region for judgment and preparation of drought in consideration of the regional characteristics. First of all, Standardized Precipitation Index (3) were calculated by monthly rainfall data from rainfall data more than 30 years of 88 stations. Parametric frequency and nonparametric frequency using boundary kernel density function were analysed using annual minimum data that were extracted from calculated SPI (3). Also, Target return period sets up 30 year and target SPI analysed unit of region using thiessen by result of nonparametric frequency. Analyzed result, Drought was entirely different from severity and frequency by region. This study results will contribute to a national water resources plan and disaster prevention measures with data foundation for judgment and preparation of drought in korea.

물은 인류와 동식물의 필요조건으로, 물 부족 상태 즉 가뭄은 전 세계적으로 가장 두려워하는 재해 중 하나이다. 본 연구는 지역적인 특성을 고려하여 가뭄을 판단하고 대응하기 위해 목표재현기간을 설정하고 한반도 전역을 대상으로 시 군 구 단위의 지역별 목표 표준강수지수를 산정하였다. 먼저 한반도에 위치한 30년 이상의 자료기간을 보유한 88개 기상관측소의 강우자료에서 월별강우자료를 추출하고 SPI (3)가뭄지수를 산정하였다. 산정된 SPI (3)에서 연도별 최저치를 추출하여 매개변수적 빈도해석과 경계핵밀도 함수를 이용한 비매개변수적 빈도해석을 실시하였다. 또한, 목표재현기간을 30년으로 설정하고 비매개변수적 빈도해석 결과에 티센비 적용하여 시 군 구 단위로 목표 표준강수지수를 산정하였다. 분석결과 가뭄의 심도와 빈도가 지역별로 크게 다르게 나타남을 확인 할 수 있었으며, 이는 한반도 가뭄의 판단과 대응을 위한 기초자료로 국가적인 수자원계획과 방재대책에 기여하고자 한다.

Keywords

References

  1. An, C. Y. (2012). "Hope to farmer welcome rain ending drought." Forcus Newspaper (in Korean).
  2. Kim, G. S. and Lee, J. W. (2011). "Evalustion of indices using the drought records."Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 639-652 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.8.639
  3. Kwak, J. W., Lee, S. D., Kim, Y. S. and Kim, H. S. (2013). "Return period estimation of droughts using drought variables from standardized precipitation index."Journal of Korea Water Resources Association, Vol. 46, No. 8, pp. 795-805 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.8.795
  4. Lee, J. H. and Kim, C. J. (2011). "Derivation of drought severityduration- frequency curves using drought frequency analysis." Journal of Korea Water Resources Association, Vol. 44, No. 1, pp. 889-902 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.11.889
  5. Lee, J. J. and Lee, C. H. (2005). "An application of various drought indices for major drought analysis in Korea."Journal of Korean Society of Hazard Mitigation, Vol. 5, No. 4, pp. 59-69 (in Korean).
  6. Mckee, T. B., Doesken, N. J. and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales."8th Conference on Applied Climatology, 17-22 January, Aneheim, CA, pp. 179-184.
  7. Ministry of Land, Infrastructure and Transport (2001). "2001 Water plan."
  8. Ministry of Land, Infrastructure and Transport (2006). "2006 Water plan."
  9. Moon, Y. I. (2000). "Frequency using boundary kernel density function."Journal of Korea Water Resources Association, Vol. 33, No. 1, pp. 71-76 (in Korean).
  10. Muller, H. G. (1991). "Smooth optimum kernel estimators near endpoints."Biometrika, Vol. 78, No. 3, pp. 521-530. https://doi.org/10.1093/biomet/78.3.521
  11. National Emergency Management Agency (2010). "Study on goal setting disaster prevention performance taget considering climate change."(in Korean).
  12. National Emergency Management Agency (2012). "Standards setting disaster prevention performance taget by region."(in Korean).
  13. Oh, T. S., Moon, Y. I., Kim, S. S. and Park, G. S. (2011). "Frequency analysis of meteorelogic drought indices using boundary kernel density function."Journal of Korean Society of Civil Engineering, Vol. 31, No. 2B, pp. 87-98 (in Korean).
  14. Ryu, J. H., Lee, D. R., Ahn, J. H. and Yoon, Y. N. (2002). "A comparative study on the drought indices for drought evaluation." Journal of Korea Water Resources Association, Vol. 35, No. 4, pp. 397-410 (in Korean). https://doi.org/10.3741/JKWRA.2002.35.4.397
  15. Woo, M. K. and Aondover Tarhule. (1994). "Streamflow droughts of northern nigerian rivers."Hydrological Sciences Journal, Vol. 39, No. 1, pp. 9-34.
  16. Yoo, J. Y., Kim, T. W. and Kim, S. D. (2010). "Drought frequency analysis using cluster analysis and bivariate probability distribution." Journal of Korean Society of Civil Engineering, Vol. 30, No. 6B, pp. 599-606 (in Korean).
  17. Yoon, Y. N. and Park, M. J. (1997). "Regional drought frequency analysis of monthly rainfall data by method of L-Moments." Journal of Korea Water Resources Association, Vol. 30, No. 1, pp. 55-62 (in Korean).

Cited by

  1. MODIS DSI for Evaluation of the Local Drought Events in Korea vol.35, pp.6, 2015, https://doi.org/10.12652/Ksce.2015.35.6.1209
  2. Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.037
  3. Investigation of drought-vulnerable regions in North Korea using remote sensing and cloud computing climate data vol.190, pp.3, 2018, https://doi.org/10.1007/s10661-018-6466-0