• Title/Summary/Keyword: SPH simulation

Search Result 84, Processing Time 0.026 seconds

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft using Smoothed Particle Hydrodynamics (입자법을 이용한 회전익항공기 연료셀 피탄 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2553-2558
    • /
    • 2014
  • Military rotorcraft should be designed taking into account the condition of the fuel cell bullet impact. The internal fluid pressure, stress of metal fitting and fuel cell, bullet kinetic energy can be included as the design factor for the fuel cell. The best way to obtain the important design data is to conduct the verification test with actual product. But, the verification test requires huge cost and long-term effort. Moreover, there is high risk to fail because of the sever test condition. Thus, the numerical simulation is required to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact simulation based on SPH(smoothed particle hydrodynamics) is conducted with the commercial package, LS-DYNA. As the result of the numerical simulation, the internal pressure of fuel cell is calculated as 350~360MPa and the equivalent stress caused by hydro-ram effect is predicted as 260~350MPa on metal fittings.

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

Failure Characteristics of Oil Boom Considering the Nonlinear Interaction of Oil Boom with Waves (Oil boom과 파랑의 비선형상호작용을 고려한 Oil Boom의 누유특성)

  • Cho, Yong-Jun;Yoon, Dae-Kyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.193-204
    • /
    • 2011
  • To develop more robust oil boom which is vulnerable to various failure mode under severe weather condition, highly accurate wave model is developed using Spatially filtered Navier-Stokes Eq., LDS (Lagrangian Dynamic Smagorinsky model) for residual stresses, SPH (Smoothed Particle Hydrodynamics). To clarify the hydraulic characteristics of floating type oil boom, we numerically simulate the behavior of oil spill around oil boom under very energetic progressive waves. At the first stage, we firmly anchored the oil boom, and then, allowed the excursion of the oil boom. It turns out that oil boom with skirt of enough length (longer than 30% of depth) effectively confines the oil spill even against very energetic waves. We can also observe obliquely descending vertical eddies between y = 1~2 m as horizontal vortices shedding at the interface of oil spill and water are diffused toward the bottom, which is believed to be the birth, growing and break-down of Kelvin-Helmholz wave.

Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System (컴퓨터 시뮬레이션을 이용한 극저온 절단 기술 적용성 연구 및 극저온 절단 시스템 주요 부품 제작)

  • Kim, Sung-Kyun;Lee, Dong-Gyu;Lee, Kune-Woo;Song, Oh-Seop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  • PDF

Numerical Simulation of Full-Scale Crash Impact Test for Fuel Cell of Rotorcraft (회전익항공기 연료셀 충돌충격시험 Full-Scale 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan;Kim, Sung Jun;Kim, Soo Yeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Crashworthy fuel cells have a great influence on improving the survivability of crews. Since 1960's, the US army has developed a detailed military specification, MIL-DTL-27422, defining the performance requirements for rotorcraft fuel cells. In the qualification tests required by MIL-DTL-27422, the crash impact test should be conducted to verify the crashworthiness of fuel cell. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. Because the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, the failure of crash impact test can result in serious delay of a entire rotorcraft development. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. Present study performs the numerical simulation using SPH(smoothed particle hydro-dynamic) method supported by a crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the resulting equivalent stresses of fuel cell itself are calculated and vulnerable areas are also evaluated.

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

Fluid Simulation using Augmented Reality (증강현실을 이용한 유체 시뮬레이션)

  • Lim, Sun-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.485-488
    • /
    • 2011
  • 현재 증강현실은 산업, 상업, 게임, 의료, 제조, 모바일, 건축뿐만아니라 교육까지 매우 광범위하게 사용되고 있다. 본 논문에서는 증강현실을 위한 라이브러리인 ARToolkit을 이용하여 Smoothed Particle Hydrodynamics (SPH) 방법을 적용한 유체 시뮬레이션을 증강현실에 적용하였다. 유체 시뮬레이션을 증강현실로 구현함으로써 OpenGL로만 구현하였을 때보다 유체 시뮬레이션의 흐름을 보다 쉽게 파악 할 수 있다.

Study on the Computational Simulation of Large Scale Gap Test (Large Scale Gap 시험의 전산모사연구)

  • Lee, Jin-Sung;Park, Jung-Su;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.932-940
    • /
    • 2011
  • This study describes computational simulation results in 2-dimensional and 3-dimensional space concerning large scale gap test(LSGT) by using commercial hydrocode such as AUTODYN and LS-DYNA to analyze the detonation phenomenons of high explosives. To consider the possibilities of LSGT simulation, we used Lee - Tarver reaction rate model of PBX-9404 and Comp-B which were implemented AUTODYN's material library. Also we have tried the diverse numerical schemes such as Lagrangian, Eulerian and ALE(Arbitary Lagrangian Eulerian), SPH(Smoothed Particle Hydrodynamics) in LSGT simulations. After LSGT simulations, we compared the simulation results with published results to verify the LSGT simulations. According to the LSGT simulations, we have concluded as follows. In 2-dimensional and 3-dimensional space, Lagrangian solver provided the most reliable results based on analysis time and accuracy. When using two hydrocodes in 2-dimensional space, the simulation results are almost same except one explosive model. We have verified the modeling method and simulation results of the LSGT by using the commenrcial hydrocode in this study.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

On the Hydraulic Characteristics of Efficient Long Wave Energy Absorber-Eco-breaker 2 (장파 제어체 Eco-breaker 2의 수리특성)

  • Cho, Yong Jun;Kim, Ho Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.547-558
    • /
    • 2008
  • With the advent of super cargo ship due to the explosive increase in the amount of cargo shipped via seas, some mega ports are under construction in South Korea, to accommodate the super cargo ship, and some of them already enter their final phase. To sustain the harbor tranquility, mega ports usually comprise huge vertical type breakwaters which are intrinsically vulnerable to the attack of long waves. In this rationale, we present the chamber type breakwater with a circular curtain wall - Eco-breaker 2, to alleviate the reflection of long waves and numerically investigate the hydraulic characteristics of Eco-breaker 2. As a wave driver, we use the Navier-Stokes eq., the most robust wave driver, using SPH (Smoothed Particle Hydrodynamics) and LES (Large Eddy Simulation). For the verification of numerical results, we also carried out hydraulic model test. It is shown that Eco-breaker 2 can effectively alleviate the reflection of long waves with its inherited large organized eddies encompassing the water chamber and some region off the curtain wall of varying size. It is also shown that the scope and strength of large organized eddies strongly depends on the incident wave period, and the reflection coefficient can be lowered to 0.18 by tuning the size of water chamber such that resident time at the chamber is just short of the half period of incident waves. Based on these results, we present the specification of Eco-breaker 2 to boost its use on the development of water environment friendly harbor worldwide.