• Title/Summary/Keyword: SPH(Smoothed particle hydrodynamics)

Search Result 109, Processing Time 0.027 seconds

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

A Contact Algorithm in the Low Velocity Impact Simulation with SPH

  • Min, Oak-Key;Lee, Jeong-Min;Kim, Kuk-Won;Lee, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.705-714
    • /
    • 2000
  • The formulation of Smoothed Particle Hydrodynamics (SPH) and a shortcoming of traditional SPH in contact simulation are presented. A contact algorithm is proposed to treat contact phenomenon between two objects. We describe the boundary of the objects with non-mass artificial particles and set vectors normal to the contact surface. Contact criterion using non-mass particles is established in this study. In order to verify the contact algorithm, an algorithm is implemented in to an in-house program; elastic wave propagation is an analysed under low velocity axial impact of two rods. The results show that the contact algorithm eliminates the undesirable phenomena at the contact surface; numerical result with the contact algorithm is compared with theoretical one.

  • PDF

Smoothed Particle Hydrodynamics Code Basics

  • MONAGHAN J. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.203-207
    • /
    • 2001
  • SPH is the shorthand for Smoothed Particle Hydrodynamics. This method is a Lagrangian method which means that it involves following the motion of elements of fluid. These elements have the characteristics of particles and the method is called a particle method. A useful review of SPH (Monaghan 1992) gives the basic technique and how it can be applied to numerous problems relevant to astrophysics. You can get some basic SPH programs from http) /www.maths.monash.edu.au/jjm/sphlect In the present lecture I will assume that the student has studied this review and therefore understands the basic principles. In today's lecture I plan to approach the equations from a different perspective by using a variational principle.

  • PDF

Numerical analysis of dam breaking problem using SPH (제체의 갑작스런 붕괴로 인한 충격파 수치해석 - SPH (Smoothed Particle Hydrodynamics)를 중심으로)

  • Cho, Yong Jun;Kim, Gweon Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.261-270
    • /
    • 2008
  • Even though there is a great deal of progress in a numerical method of high caliber like SPH, it is very rarely deployed in a water resources community. Despite the great stride in computing environment, depth averaged approach like a nonlinear shallow equation is still efficient tool for flood routing in large watershed, but it can give some misleading information like the inundation height of flood. In this rationale, we numerically simulate the flow into the dry channel, dry channel with an obstacle triggered by the collapse of a two dimensional water column using SPH (Smoothed Particle Hydrodynamics) in order to boost the application of numerical method of high caliber like SPH in a water resources community. As a most severe test of the robustness of SPH, we also carry out the simulation of the flow through a clearance into the wet channel driven by the rapid removal of a water gate. As a hydrodynamic model, we used the Navier-Stokes equation, a numerical integration of which was carried out using SPH. To verify the validity of newly proposed numerical model, we compare the numerically simulated flow with the others in the literature mainly from VOF and MAC, and hydraulic experiments by Martin and Moyce (1952), Koshizuka et al. (1995) and Janosi et al. (2004). It was shown that agreements between the numerical results in this study and hydraulic experiments are remarkable.

Development of GPU-Paralleled multi-resolution techniques for Lagrangian-based CFD code in nuclear thermal-hydraulics and safety

  • Do Hyun Kim;Yelyn Ahn;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2498-2515
    • /
    • 2024
  • In this study, we propose a fully parallelized adaptive particle refinement (APR) algorithm for smoothed particle hydrodynamics (SPH) to construct a stable and efficient multi-resolution computing system for nuclear safety analysis. The APR technique, widely employed by SPH research groups to adjust local particle resolutions, currently operates on a serialized algorithm. However, this serialized approach diminishes the computational efficiency of the system, negating the advantages of acceleration achieved through high-performance computing devices. To address this drawback, we propose a fully parallelized APR algorithm designed to enhance both efficiency and computational accuracy, facilitated by a new adaptive smoothing length model. For model validation, we simulated both hydrostatic and hydrodynamic benchmark cases in 2D and 3D environments. The results demonstrate improved computational efficiency compared to the conventional SPH method and APR with a serialized algorithm, and the model's accuracy was confirmed, revealing favorable outcomes near the resolution interface. Through the analysis of jet breakup, we verified the performance and accuracy of the model, emphasizing its applicability in practical nuclear safety analysis.

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Bird Strike Analysis and Test of Composite Aircraft Radome (항공기 복합재 레이돔에 대한 조류충돌해석 및 시험)

  • Won, Moon-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.319-325
    • /
    • 2019
  • The main purpose of this study is to compare the bird strike analysis result of the radome composed of composite laminate and sandwich structure attached to aircraft with test result. First of all, we generated bird model which has water properties through SPH(Smoothed Particle Hydrodynamics) method. And then bird strike analysis was conducted with initial velocity of bird measured from bird strike test. From analysis result we investigated whether structural failure occurred or not onto the radome and compare maximum displacement of the radome structure with test result. Also reliability of numerical analysis model was confirmed through time-dependent pressure trend on this collision process matched existing research result. Furthermore, we confirmed that failure behavior of the radome can be affected by density of the particles in the bird model.

An application of Smoothed Particle Hydrodynamics on intake system analysis in a dam (입자법을 이용한 댐 취수 운영의 3차원 해석 적용)

  • Kim, Sunghoon;Cho, Kwangjoon;Park, Chungik;Moon, Sukju;Kim, Jongchan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.92-92
    • /
    • 2019
  • 최근 기존의 격자방식의 해석 방법을 벗어나 해석 영역에 대한 분할을 별도로 고려치 않는 수치기법의 실무적 적용사례가 증가 하고 있으며, 이러한 방식중 SPH(Smoothed Particle Hydrodynamics) 방식이 근자에 수자원 분야에서도 도입되어 관수로 및 개수로 해석 또는 복합해석 등에 활용된 바 있다. 최초 도입된 무격자방식의 모형들은 주로 복잡한 형상을 지니는 유체기계 등에 활용성이 높았던 바, 큰 규모의 해석 도메인을 가지는 수자원 분야에서의 SPH의 실무적용 평가와 효율성의 확보를 위해서, 본 연구는 국내 댐을 시범 대상으로 하여 SPH 수치해석 툴을 적용하고자 하였다. 분석 대상댐은 국내 P댐으로서 관리수위의 변동은 크지 않으나, 댐 직상류의 만곡이 심하고 다수의 대규모 취수구를 가진 곳으로 상시 발전방류 및 수시 댐 수문방류에 의해 유체의 흐름이 2,3차원의 복잡성을 띄고있기 때문에, 3차원 전산유체역학 Tool의 적용이 적절한 것으로 판단하였다. 해석을 위해 하류경계조건을 댐축과 문비로 설정하였고 상류 1km까지를 해석의 도메인으로 설정하였다. 소요시간을 줄이기 위해 여러 번의 모의를 거쳐 입자의 평균 입경은 0.6m로 제안하고 시격은 1초 미만(평균 0.5초)로 설정하였다. 수문 및 발전방류는 해당댐의 1~2년 빈도 수준에 해당하는 $5,000m^3/s$ 이하의 유량을 기준으로 하여 모의를 수행하였다. 모의의 안정성을 확보한 이후에는 해당 댐지역의 하류영향을 고려한 문비제어를 반영한 다양한 방식의 수문운영 및 취수지점의 순간 수위 영향을 검토하였다. 그 결과로 본 모의에서는 특정한 수문의 운영 조건에서는 댐수위 계측지점과 인근 취수지점 간에도 0.2m 수준의 순간 수위차가 발생할 수 있음을 보였으며, 이는 경우에 따라 취수시설의 일시적 장애요소로 발생할 수 있음을 의미한다. 따라서, 현재의 취수구조물과 문비운영 특성에 따라 발생가능한 취수장애를 줄일 수 있는 운영조건의 탐색을 위해서 수치모의를 추가로 하였으며, 이 때 댐축 상류의 유속분포에 대한 추가 검토도 수행하였다. 다만, 댐에서 방류시 하류조건에 대한 검토는 추후 보강되어야 할 것으로 판단된다.

  • PDF