• 제목/요약/키워드: SPECIES TRAITS

Search Result 450, Processing Time 0.03 seconds

Comparison of ecophysiological and leaf anatomical traits of native and invasive plant species

  • Rindyastuti, Ridesti;Hapsari, Lia;Byun, Chaeho
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.24-39
    • /
    • 2021
  • Background: To address the lack of evidence supporting invasion by three invasive plant species (Imperata cylindrica, Lantana camara, and Chromolaena odorata) in tropical ecosystems, we compared the ecophysiological and leaf anatomical traits of these three invasive alien species with those of species native to Sempu Island, Indonesia. Data on four plant traits were obtained from the TRY Plant Trait Database, and leaf anatomical traits were measured using transverse leaf sections. Results: Two ecophysiological traits including specific leaf area (SLA) and seed dry weight showed significant association with plant invasion in the Sempu Island Nature Reserve. Invasive species showed higher SLA and lower seed dry weight than non-invasive species. Moreover, invasive species showed superior leaf anatomical traits including sclerenchymatous tissue thickness, vascular bundle area, chlorophyll content, and bundle sheath area. Principal component analysis (PCA) showed that leaf anatomical traits strongly influenced with cumulative variances (100% in grass and 88.92% in shrubs), where I. cylindrica and C. odorata outperformed non-invasive species in these traits. Conclusions: These data suggest that the traits studied are important for plant invasiveness since ecophysiological traits influence of light capture, plant growth, and reproduction while leaf anatomical traits affect herbivory, photosynthetic assimilate transport, and photosynthetic activity.

Growth Response, Ecological Niche and Overlap between Quercus variabilis and Quercus dentata under Soil Moisture Gradient (토양수분구배에서 굴참나무와 떡갈나무의 생육반응, 생태 지위 및 중복역)

  • Park, Yeo-Bin;Kim, Eui-Joo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.47-56
    • /
    • 2023
  • The Quercus variabilis and Quercus dentata, which are said to be relatively drought tolerant among the important genus Quercus that represent deciduous broad-leaved forests in Korea. These two species are widely distributed worldwide in Korea, Japan and China (northern, central, western and eastern subtropical regions). This study compared the ecological niche breadth and overlap according to growth response in 4 soil moisture gradients for the two species and tried to reveal degree of competition and ecological niche characteristics. The ecological niche breadth was 0.977±0.020 for Q. variabilis and 0.979±0.014 for Q. dentata, the latter being slightly wider. And they were similar in 5 traits (stem length, leaf lamina length, leaf width length, stem weight, leaf petiole weight), Q. variabilis was more dominant in 4 traits (leaves number, stem diameter, leaf area, leaf petiole length), and Q. dentata was more dominant in 7 traits (root length, shoot length, plant weight, root weight, shoot weight, leaf weight, leaf petiole weight). The ecological niche overlap for soil moisture between the two species overlapped most in plant structure-related traits and least in photosynthetic organ-related traits such as petiole length. As a result of principal component analysis, degree of competition between the two species for soil moisture was more severe when the soil moisture condition was low than high. Among the measured traits that affect the two-dimensional distribution, 8 traits (Leaves number, Shoot length, Stem length, Plant weight, Root weight, Shoot weight, Stem weight, Leaves weight) were correlated with the factor 1, and 2 traits (Leaf width length, Leaf petiole weight) were correlated with the factor 2 (r>0.5). These results show that the ecological response of the two species to soil moisture is not a few traits involved, but several traits are involved simultaneously.

Ecological Niche Overlap and Competition between Quercus mongolica and Quercus dentata Under Soil Water Gradient

  • Yeon-ok, Seo;Se-Hee, Kim;Eui-Joo, Kim;Yoon-Seo, Kim;Kyeong-Mi, Cho;Jae-Hoon, Park;Ji-Won, Park;JungMin, Lee;Jin Hee, Park;Byoung-Ki, Choi;Young-Han, You
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.229-238
    • /
    • 2022
  • Q. mongolica and Q. dentata are representative species of deciduous forest communities in Korea and are known to be relatively resistant to soil drying condition among Korean oaks. This study attempted to elucidate the degree of competition and ecological niche characteristics of the two species by comparing the ecological responses of the two species according to soil moisture. Competition between Q. mongolica and Q. dentata was shown to be more intense under the conditions where moisture content was low than under the conditions where moisture content was high. As for the ecological niche overlaps of the two species for soil moisture, the structural traits of plant such as stem diameter overlapped the most, the traits of biomass such as petiole weight overlapped the least, and photosynthetic organ-related traits such as leaf width and length overlapped intermediately. When looking at the competition for soil moisture between the two species, it can be seen that Q. mongolica won in nine traits (leaf width length, leaf lamina length, leaf lamina weight, leaf petiole weight, leaf area, leaves weight, shoot weight, root weight, and plant weight) and Q. dentata won in the remaining seven traits (leaf petiole length, leaves number, stem length, stem diameter, stem weight, shoot length, and root length). Competition between the two species for the moisture environment of the soil was shown to be intense under the conditions where moisture content was low. The degree of competition between Q. dentata and Q. mongolica for soil moisture is high under the conditions where soil moisture content is low, and it is judged that Q. mongolica is more competitive for soil moisture than Q. dentata.

Variation in leaf functional traits of the Korean maple (Acer pseudosieboldianum) along an elevational gradient in a montane forest in Southern Korea

  • Nam, Ki Jung;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.278-284
    • /
    • 2018
  • Plant functional traits have been shown to be useful to understand how and why ecosystems and their components vary across environmental heterogeneity or gradients. This study investigated how plant functional (leaf) traits vary according to an elevation-associated environmental gradient. Environmental gradients (mean annual temperature and precipitation) were quantified, and leaf traits (leaf area, specific leaf area, leaf nitrogen, leaf phosphorus, leaf carbon, and leaf C/N ratio) of the understory woody plant species Acer pseudosieboldianum were examined across an elevational gradient ranging from 600 to 1200 m in a Baegunsan Mountain in Gwangyang-si, Jeollanam-do, South Korea. The results showed that mean annual temperature and precipitation decreased and increased along with elevation, respectively. Leaf area of the plant species decreased slightly with increasing elevation, while specific leaf area did not differ significantly. Leaf nutrients (nitrogen, phosphorus, and carbon concentrations) were higher at high elevations, but leaf C/N ratio decreased with elevation.

Life History Traits and the Rate of Molecular Evolution in Galliformes (Aves)

  • Eo, Soo-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • Rates of molecular evolution are known to vary widely among taxonomic groups. A number of studies, examining various taxonomic groups, have indicated that body size is negatively and clutch size is positively correlated with the rates of nucleotide substitutions among vertebrate species. Generally, either smaller body mass or larger clutch size is associated with shorter generation times and higher metabolic rates. However, this generality is subject to ongoing debate, and large-scale comparative studies of species below the Order level are lacking. In this study, phylogenetically independent methods were used to test for relationships between rates of the mitochondrial cytochrome b evolution and a range of life history traits, such as body mass and clutch size in the Order Galliformes. This analysis included data from 67 species of Galliformes birds and 2 outgroup species in Anseriformes. In contrast to previous studies, taxa were limited to within-Order level, not to Class or higher. I found no evidence to support an effect of life history traits on the rate of molecular evolution within the Galliformes. These results suggest that such relationship may be too weak to be observed in comparisons of closely related species or may not be a general pattern that is applicable to all nucleotide sequences or all taxonomic groups.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Variation in morphological traits over a wave-exposure gradient in one but not in another species of the brown alga Carpophyllum (Fucales)

  • Hodge, Fiona;Buchanan, Joseph;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • Environmental conditions can influence the morphology of local biota through phenotypic plasticity or local adaptation. Macroalgal morphologies are often associated with wave-exposure conditions. We investigated the relationship between morphology and wave exposure in two common endemic subtidal macroalgae, Carpophyllum angustifolium and C. maschalocarpum, from the East Cape of New Zealand. Morphological comparisons were made between individuals from two sites and four different wave-exposure zones, as defined by fetch and barnacle composition. Of the seven morphological traits measured in C. angustifolium, only total length varied, and individuals were longer in more wave-exposed environments between the two exposure zones where the species were found. In contrast, total length, stipe thickness and vesicle presence all varied significantly between exposure zones in C. maschalocarpum. C. maschalocarpum specimens were shorter with thinner stipes, and fewer individuals had vesicles in the more wave-exposed zones. Morphological traits of both species also varied between sites, suggesting that other influences are important for determining species morphology. Further study is needed to investigate the role of phenotypic plasticity and genetic variability for driving morphological variation in C. angustifolium and C. maschalocarpum.

Floral Analysis in the Kimpo Landfills and Its Peripheral Region (김포 매립지와 그 근린 지역의 식물상 분석)

  • Kim, Jong-Won;Yong-Kyoo Jung
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.31-41
    • /
    • 1995
  • Floral analysis about vegetation of Kimpo landfills and its periphery region was carried out. The study area was defined to a square $(81km^2)$ of which center was located at 250m in front of Andongpo, Komdan-myon, Kimpo-gun in the northwest part of the Kyunggi Province. This study was accomplished by analyzing five qualitative traits such as ecological strategy, reproductive strategy, distribution type, native/foreign division and life-form throughout actual investigation of the flora. The flora was composed of 536 taxa which comprise 105 families, 343 genera, 458 species, 1 subaspecies, 70 varieties and 7 forms (including 92 species of horticultural plant). Lythrum salicaria community, Spiraea salicifolia community, ottelia alismoides community and woods of Alnus japonica were recorded ? 새 retrictive distribution according to habitat characteristics. Owing to severe anthropogenic interferences such as construction of the Kimpo landfills in the study areas, a high proportion of ruderal plants and neophytes in the floral composition was recognized. The proportion of individual distribution type and therophyte was very high throughout whole study areas, and plant communities in the reclaimed areas were characterized by high proportion of phalanx plant species. Analysis of the correlations between meshes with ecological traits of plant species showed that Kimpo landfills and its periphery region was divided into two vegetation types, coastal type and inland type, as a result of possible saline effects.

  • PDF

Major environmental factors and traits of invasive alien plants determining their spatial distribution

  • Oh, Minwoo;Heo, Yoonjeong;Lee, Eun Ju;Lee, Hyohyemi
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.277-286
    • /
    • 2021
  • Background: As trade increases, the influx of various alien species and their spread to new regions are prevalent and no longer a special problem. Anthropogenic activities and climate changes have made the distribution of alien species out of their native range common. As a result, alien species can be easily found anywhere, and they have nothing but only a few differences in intensity. The prevalent distribution of alien species adversely affects the ecosystem, and a strategic management plan must be established to control them effectively. To this end, hot spots and cold spots were analyzed according to the degree of distribution of invasive alien plants, and major environmental factors related to hot spots were found. We analyzed the 10,287 distribution points of 126 species of alien plants collected through the national survey of alien species by the hierarchical model of species communities (HMSC) framework. Results: The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as AUC values, respectively. The hot spots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju island. Generally, the hot spots were found where the higher maximum temperature of summer, precipitation of winter, and road density are observed, but temperature seasonality, annual temperature range, precipitation of the summer, and distance to river and sea were negatively related to the hot spots. According to the model, the functional traits accounted for 55% of the variance explained by the environmental factors. The species with higher specific leaf areas were more found where temperature seasonality was low. Taller species preferred the bigger annual temperature range. The heavier seed mass was only preferred when the max temperature of summer exceeded 29 ℃. Conclusions: In this study, hot spots were places where 2.1 times more alien plants were distributed on average than non-hot spots (33.5 vs 15.7 species). The hot spots of invasive plants were expected to appear in less stressful climate conditions, such as low fluctuation of temperature and precipitation. Also, the disturbance by anthropogenic factors or water flow had positive influences on the hot spots. These results were consistent with the previous reports about the ruderal or competitive strategies of invasive plants instead of the stress-tolerant strategy. The functional traits are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters, and our result confirmed this. Therefore, in order to effectively control alien plants, it is judged that the occurrence of disturbed sites in which alien plants can grow in large quantities is minimized, and the river management of waterfronts is required.

Analysis of effects of burning in grasslands with quantifying succession stages by life-history traits in Kirigamine, central Japan

  • Kato, Jun;Kawakami, Mihoko
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.101-112
    • /
    • 2013
  • To quantitatively analyze the effects of burning, we conducted a vegetation survey in the grasslands in Kirigamine, central Japan. We classified each species into stages of succession based on the life-history traits of the species and defined the score of the species in each stand based on the classification. We weighted the scores with a v-value, the product of coverage and height in the quadrat, and summed them to calculate the index of dynamic status. With these indices, we were able to quantitatively compare the stands in the study area and discern minute differences between the stands with different lengths of restoration periods since the disturbance of burning. These indices correlated with the v-value of trees, suggesting that the disturbance of burning seemed to affect the trees in the stand. We then calculated the growth of the tree species Pinus densiflora to evaluate its contribution to the index of dynamic status.