DOI QR코드

DOI QR Code

Variation in morphological traits over a wave-exposure gradient in one but not in another species of the brown alga Carpophyllum (Fucales)

  • Hodge, Fiona (School of Biological Sciences, Victoria University of Wellington) ;
  • Buchanan, Joseph (School of Biological Sciences, Victoria University of Wellington) ;
  • Zuccarello, Giuseppe C. (School of Biological Sciences, Victoria University of Wellington)
  • Received : 2011.04.25
  • Accepted : 2011.07.19
  • Published : 2011.09.15

Abstract

Environmental conditions can influence the morphology of local biota through phenotypic plasticity or local adaptation. Macroalgal morphologies are often associated with wave-exposure conditions. We investigated the relationship between morphology and wave exposure in two common endemic subtidal macroalgae, Carpophyllum angustifolium and C. maschalocarpum, from the East Cape of New Zealand. Morphological comparisons were made between individuals from two sites and four different wave-exposure zones, as defined by fetch and barnacle composition. Of the seven morphological traits measured in C. angustifolium, only total length varied, and individuals were longer in more wave-exposed environments between the two exposure zones where the species were found. In contrast, total length, stipe thickness and vesicle presence all varied significantly between exposure zones in C. maschalocarpum. C. maschalocarpum specimens were shorter with thinner stipes, and fewer individuals had vesicles in the more wave-exposed zones. Morphological traits of both species also varied between sites, suggesting that other influences are important for determining species morphology. Further study is needed to investigate the role of phenotypic plasticity and genetic variability for driving morphological variation in C. angustifolium and C. maschalocarpum.

Keywords

References

  1. Adams, N. M. 1994. Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch, 360 pp.
  2. Arsenault, D. J., Marchinko, K. B. & Palmer, A. R. 2001. Precise tuning of barnacle leg length to coastal wave action. Proc. R. Soc. Lond. B Biol. Sci. 268:2149-2154. https://doi.org/10.1098/rspb.2001.1776
  3. Baardseth, E. 1970. A square-scanning, two-stage sampling method of estimating seaweed quantities. Norwegian Institute of Seaweed Research Report No. 33. Institute for Marine Biochemistry, University of Trondheim, Trondheim, 41 pp.
  4. Ballantine, W. J. 1961. A biologically-defined exposure scale for the comparative description of rocky shores. Field Stud. 1:1-19.
  5. Blanchette, C. A. 1997. Size and survival of intertidal plants in response to wave action: a case study with Fucus gardneri. Ecology 78:1563-1578. https://doi.org/10.1890/0012-9658(1997)078[1563:SASOIP]2.0.CO;2
  6. Carrington, E. 1990. Drag and dislodgment of an intertidal macroalga: consequences of morphological variation in Mastocarpus papillatus Kutzing. J. Exp. Mar. Biol. Ecol. 139:185-200. https://doi.org/10.1016/0022-0981(90)90146-4
  7. Carrington Bell, E. & Denny, M. W. 1994. Quantifying "wave exposure": a simple device for recording maximum velocity and results of its use at several field sites. J. Exp. Mar. Biol. Ecol. 181:9-29. https://doi.org/10.1016/0022-0981(94)90101-5
  8. Cole, R. G., Babcock, R. C., Travers, V. & Creese, R. G. 2001. Distributional expansion of Carpophyllum flexuosum onto wave-exposed reefs in north-eastern New Zealand. N. Z. J. Mar. Freshw. Res. 35:17-32. https://doi.org/10.1080/00288330.2001.9516976
  9. Coleman, M. A. & Muhlin, J. F. 2008. Patterns of spatial variability in the morphology of sympatric fucoids. Northeast. Nat. 15:111-122. https://doi.org/10.1656/1092-6194(2008)15[111:POSVIT]2.0.CO;2
  10. Coyer, J. A., Olsen, J. L. & Stam, W. T. 1997. Genetic variability and spatial separation in the sea palm kelp Postelsia palmaeformis (Phaeophyceae) as assessed with M13 fingerprints and RAPDs. J. Phycol. 33:561-568. https://doi.org/10.1111/j.0022-3646.1997.00561.x
  11. Denny, M. W. 1988. Biology and the mechanics of the wave-swept environment. Princeton University Press, Princeton, NJ, 344 pp.
  12. Denny, M. W. 2006. Ocean waves, nearshore ecology, and natural selection. Aquat. Ecol. 40:439-461. https://doi.org/10.1007/s10452-004-5409-8
  13. Dromgoole, F. I. 1973. A contribution to the biology of the genus Carpophyllum Grev. Unpublished Ph. D. dissertation, University of Auckland, Auckland, New Zealand, 361 pp.
  14. Dudgeon, S. R. & Johnson, A. S. 1992. Thick vs. thin: Thallus morphology and tissue mechanics influence differential drag and dislodgement of two co-dominant seaweeds. J. Exp. Mar. Biol. Ecol. 165:23-43. https://doi.org/10.1016/0022-0981(92)90287-K
  15. Eckman, J. E. 1983. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28:241-257. https://doi.org/10.4319/lo.1983.28.2.0241
  16. Eckman, J. E., Duggins, D. O. & Siddon, C. E. 2003. Current and wave dynamics in the shallow subtidal: implications to the ecology of understory and surface-canopy kelps. Mar. Ecol. Prog. Ser. 265:45-56. https://doi.org/10.3354/meps265045
  17. Engelen, A. H., Aberg, P., Olsen, J. L., Stam, W. T. & Breeman, A. M. 2005. Effects of wave exposure and depth on biomass, density and fertility of the fucoid seaweed Sargassum polyceratium (Phaeophyta, Sargassaceae). Eur. J. Phycol. 40:149-158. https://doi.org/10.1080/09670260500109210
  18. Engelen, A. H., Olsen, J. L., Breeman, A. M. & Stam, W. T. 2001. Genetic differentiation in Sargassum polyceratium (Fuclaes: Phaeophyceae) around the island of Curacao (Netherlands Antilles). Mar. Biol. 139:267-277. https://doi.org/10.1007/s002270100586
  19. Foster, B. A. 1967. A guide to the littoral balanomorph barnacles of New Zealand. Tuatara 15:75-86.
  20. Foster, B. A. 1978. The marine fauna of New Zealand: Barnacles (Cirripedia: Thoracica). N. Z. Oceanogr. Inst. Mem. 69:1-160.
  21. Fowler-Walker, M. J., Wernberg, T. & Connell, S. D. 2006. Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits? Mar. Biol. 148:755-767. https://doi.org/10.1007/s00227-005-0125-z
  22. Gaylord, B. 1999. Detailing agents of physical disturbance: wave-induced velocities and accelerations on a rocky shore. J. Exp. Mar. Biol. Ecol. 239:85-124. https://doi.org/10.1016/S0022-0981(99)00031-3
  23. Gaylord, B., Blanchette, C. A. & Denny, M. W. 1994. Mechanical consequences of size in wave-swept algae. Ecol. Monogr. 64:287-313. https://doi.org/10.2307/2937164
  24. Heaven, C. S. & Scrosati, R. A. 2008. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 369:13-23. https://doi.org/10.3354/meps07655
  25. Hochkirch, A., Deppermann, J. & Gröning, J. 2008. Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper species. Evol. Dev. 10:350-359. https://doi.org/10.1111/j.1525-142X.2008.00243.x
  26. Hodge, F. J. 2009. Hybridisation in the brown alga Carpophyllum: investigating morphology, distribution and wave exposure. Unpublished Msc. thesis, Victoria University of Wellington, Wellington, New Zealand, 102 pp.
  27. Hodge, F. J., Buchanan, J. & Zuccarello, G. C. 2010. Hybridization between the endemic brown algae Carpophyllum maschalocarpum and Carpophyllum angustifolium (Fucales): genetic and morphological evidence. Phycol. Res. 58:239-247. https://doi.org/10.1111/j.1440-1835.2010.00583.x
  28. Hurd, C. L. 2000. Water motion, marine macroalgal physiology, and production. J. Phycol. 36:453-472. https://doi.org/10.1046/j.1529-8817.2000.99139.x
  29. Johnson, A. S. & Koehl, M. A. R. 1994. Maintenance of dynamic strain similarity and environmental stress factor in different flow habitats: thallus allometry and material properties of a giant kelp. J. Exp. Biol. 195:381-410.
  30. Kawamata, S. 2001. Adaptive mechanical tolerance and dislodgement velocity of the kelp Laminaria japonica in wave-induced water motion. Mar. Ecol. Prog. Ser. 211:89-104. https://doi.org/10.3354/meps211089
  31. Kitzes, J. A. & Denny, M. W. 2005. Red algae respond to waves: morphological and mechanical variation in Mastocarpus papillatus along a gradient of force. Biol. Bull. 208:114-119. https://doi.org/10.2307/3593119
  32. Lindegarth, M. & Gamfeldt, L. 2005. Comparing categorical and continuous ecological analyses: effects of "wave exposure" on rocky shores. Ecology 86:1346-1357. https://doi.org/10.1890/04-1168
  33. Mathieson, A. C., Dawes, C. J., Wallace, A. L. & Klein, A. S. 2006. Distribution, morphology, and genetic affinities of dwarf embedded Fucus populations from the Northwest Atlantic Ocean. Bot. Mar. 49:283-303. https://doi.org/10.1515/BOT.2006.036
  34. Mathieson, A. C., Norton, T. A. & Neushul, M. 1981. The taxonomic implications of genetic and environmentally induced variations in seaweed morphology. Bot. Rev. 47:313-347. https://doi.org/10.1007/BF02860577
  35. Mboumba, G. B. & Ward, D. 2008. Phenotypic plasticity and local adaptation in two extreme populations of Acacia karroo. Afr. J. Range Forage Sci. 25:121-130. https://doi.org/10.2989/AJRF.2008.25.3.4.601
  36. McQuaid, C. D., Lindsay, J. R. & Lindsay, T. L. 2000. Interactive effects of wave exposure and tidal height on population structure of the mussel Perna perna. Mar. Biol. 137:925-932. https://doi.org/10.1007/s002270000398
  37. Porter, E. T., Sanford, L. P. & Suttles, S. E. 2000. Gypsum dissolution is not a universal integrator of 'water motion'. Limnol. Oceanogr. 45:145-158. https://doi.org/10.4319/lo.2000.45.1.0145
  38. Puijalon, S. & Bornette, G. 2004. Morphological variation of two taxonomically distant plant species along a natural flow velocity gradient. New Phytol. 163:651-660. https://doi.org/10.1111/j.1469-8137.2004.01135.x
  39. Ruuskanen, A. T. & Nappu, N. P. 2005. Morphological differences in Fucus gardneri between two shores with equal cartographic exposure values but different levels of wave action. Ann. Bot. Fenn. 42:27-33.
  40. Schiel, D. R. 1980. A demographic and experimental evaluation of plant and herbivore interactions in subtidal algal stands. Unpublished Ph. D. dissertation, University of Auckland, Auckland, New Zealand, 166 pp.
  41. Schiel, D. R. 1990. Macroalgal assemblages in New Zealand: structure, interactions and demography. Hydrobiologia 192:59-76. https://doi.org/10.1007/BF00006227
  42. Stewart, H. L. 2006. Morphological variation and phenotypic plasticity of buoyancy in the macroalga Turbinaria ornata across a barrier reef. Mar. Biol. 149:721-730. https://doi.org/10.1007/s00227-005-0186-z
  43. Stewart, H. L. & Carpenter, R. C. 2003. The effects of morphology and water flow on photosynthesis of marine macroalgae. Ecology 84:2999-3012. https://doi.org/10.1890/02-0092
  44. Sultan, S. E. 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5:537-542. https://doi.org/10.1016/S1360-1385(00)01797-0
  45. Tatarenkov, A., Jonsson, R. B., Kautsky, L. & Johannesson, K. 2007. Genetic structure in populations of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. J. Phycol. 43:675-685. https://doi.org/10.1111/j.1529-8817.2007.00369.x
  46. Thompson, T. L. & Glenn, E. P. 1994. Plaster standards to measure water motion. Limnol. Oceanogr. 39:1768-1779. https://doi.org/10.4319/lo.1994.39.7.1768
  47. Thomsen, M. S., Wernberg, T. & Kendrick, G. A. 2004. The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata. Bot. Mar. 47:454-460. https://doi.org/10.1515/BOT.2004.068
  48. Trussell, G. C. 2000. Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54:151-166. https://doi.org/10.1111/j.0014-3820.2000.tb00016.x
  49. Tuya, F. & Haroun, R. J. 2006. Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian Archipelago: a multi-scaled approach. Mar. Ecol. Prog. Ser. 311:15-28.
  50. Wernberg, T. 2005. Holdfast aggregation in relation to morphology, age, attachment and drag for the kelp Ecklonia radiata. Aquat. Bot. 82:168-180. https://doi.org/10.1016/j.aquabot.2005.04.003
  51. Wernberg, T. & Thomsen, M. S. 2005. The effect of wave exposure on the morphology of Ecklonia radiata. Aquat. Bot. 83:61-70. https://doi.org/10.1016/j.aquabot.2005.05.007
  52. Williams, S. L. & Di Fiori, R. E. 1996. Genetic diversity and structure in Pelvetia fastigiata (Phaeophyta: Fucales): does a small effective neighborhood size explain fine-scale genetic structure? Mar. Biol. 126:371-382. https://doi.org/10.1007/BF00354619

Cited by

  1. The widely distributed, edible seaweeds in Peru, CHONDRACANTHUS CHAMISSOI and CHONDRACANTHUS CHAMISSOI f. glomeratus (Gigartinaceae, Rhodophyta), are morphologically dive vol.52, pp.6, 2011, https://doi.org/10.1111/jwas.12849