DOI QR코드

DOI QR Code

Effects of land-based fish farm effluent on the morphology and growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in southwestern Nova Scotia

  • White, Katelyn L. (Department of Biology, St. Francis Xavier University) ;
  • Kim, Jang-Kyun (Department of Plant and Animal Sciences, Nova Scotia Agricultural College) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Received : 2011.07.20
  • Accepted : 2011.08.25
  • Published : 2011.09.15

Abstract

Phenotypic plasticity was examined in the economically and ecologically important brown alga Ascophyllum nodosum in southwestern Nova Scotia, considering specifically how nutrient loading affected its vegetative and reproductive features. To determine this, we examined morphometric changes in A. nodosum from two sites receiving direct effluent impacts from a land-based finfish aquaculture facility and from two control sites, approximately 2 km away from the aquaculture facility in opposite directions. Fronds from test sites were significantly younger than from control sites (5 y vs. 8 y); however, fronds from farm sites were significantly larger (219 g vs. 90 g) because of their higher growth rates. Thalli from farm sites had greater reproductive potential, as shown by numbers of receptacle initials (797 initials vs. 281 initials). These results suggest limited nutrient inflows from land-based aquaculture may positively affect adjacent Ascophyllum populations by inducing higher growth rates. We conclude that the coordination of effluent management from land-based aquaculture with natural resource harvesting of A. nodosum may be beneficial. Further study is necessary to determine the limits of nutrient loading for this potentially beneficial outcome.

Keywords

References

  1. Aberg, P. 1992. A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73:1473-1487. https://doi.org/10.2307/1940691
  2. Baardseth, E. 1970. Synopsis of biological data on knobbed wrack Ascophyllum nodosum (Linnaeus) Le Jolis. FAO Fisheries Synopsis No. 38, Rev. 1. Food and Agriculture Organization, Rome, pp. 41.
  3. Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. 1999. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80:2711-2726. https://doi.org/10.1890/0012-9658(1999)080[2711:TTRCOP]2.0.CO;2
  4. Brackenbury, A. M., Kang, E. J. & Garbary, D. J. 2006. Air pressure regulation in air bladders of Ascophyllum nodosum (Fucales, Phaeophyceae). Algae 21:245-251. https://doi.org/10.4490/ALGAE.2006.21.2.245
  5. Chapman, A. R. O. 1995. Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 34:1-32. https://doi.org/10.2216/i0031-8884-34-1-1.1
  6. Chock, J. S. & Mathieson, A. C. 1976. Ecological studies on the salt marsh ecad scorpioides (Hornemann) Hauck of Ascophyllum nodosum (L.) Le Jolis. J. Exp. Mar. Biol. Ecol. 23:171-190. https://doi.org/10.1016/0022-0981(76)90140-4
  7. Chopin, T., Buschmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G. P., Zertuche-González, J. A., Yarish, C. & Neefus, C. 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J. Phycol. 37:975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x
  8. Cousens, R. 1982. The effect of exposure to wave action on the morphology and pigmentation of Ascophyllum nodosum (L.) Le Jolis in south-eastern Canada. Bot. Mar. 25:191-195. https://doi.org/10.1515/botm.1982.25.4.191
  9. Cousens, R. 1984. Estimation of annual production by the intertidal brown alga Ascophyllum nodosum (L.) Le Jolis. Bot. Mar. 27:217-227. https://doi.org/10.1515/botm.1984.27.5.217
  10. Cousens, R. 1985. Frond size distributions and the effects of the algal canopy on the behaviour of Ascophyllum nodosum (L.) Le Jolis. J. Exp. Mar. Biol. Ecol. 92:231-249. https://doi.org/10.1016/0022-0981(85)90097-8
  11. David, H. M. 1943. Studies on the autecology of Ascophyllum nodosum Le Jol. J. Ecol. 31:178-198. https://doi.org/10.2307/2256547
  12. Eckersley, L. K. & Garbary, D. J. 2007. Developmental and environmental sources of variation on annual growth increments of Ascophyllum nodosum (Phaeophyceae). Algae 22:107-116. https://doi.org/10.4490/ALGAE.2007.22.2.107
  13. Fong, P., Foin, T. C. & Zedler, J. B. 1994. A simulation model of lagoon algae based on nitrogen competition and internal storage. Ecol. Monogr. 64:225-247. https://doi.org/10.2307/2937042
  14. Garbary, D. J., Brackenbury, A., McLean, A. M. & Morrison, D. 2006. Structure and development of air bladders in Fucus and Ascophyllum (Fucales, Phaeophyceae). Phycologia 45:557-566. https://doi.org/10.2216/05-62.1
  15. Garbary, D. J. & Deckert, R. J. 2001. Three part harmony: Ascophyllum and its symbionts. In Seckback, J. (Ed.) Symbioses: Mechanisms and Model Systems. Kluwer, Dordrecht, pp. 309-321.
  16. Garbary, D. J., Lawson, G., Clement, K. & Galway, M. E. 2009. Cell division in the absence of mitosis: the unusual case of the fucoid Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae). Algae 24:239-248. https://doi.org/10.4490/ALGAE.2009.24.4.239
  17. Garbary, D. J. & McDonald, K. A. 1995. The Ascophyllum, Polysiphonia, Mycosphaerella symbiosis. 4. Mutualism in the Ascophyllum Mycosphaerella interaction. Bot. Mar. 38:221-225. https://doi.org/10.1515/botm.1995.38.1-6.221
  18. Gollety, C., Thiebaut, E. & Davoult, D. 2011. Characteristics of the Ascophyllum nodosum stands and their associated diversity along the coast of Brittany, France. J. Mar. Biol. Assoc. U. K. 91:569-577. https://doi.org/10.1017/S0025315410000901
  19. Keser, M. & Larson, B. R. 1984. Colonization and growth of Ascophyllum nodosum (Phaeophyta) in Maine. J. Phycol. 20:83-87. https://doi.org/10.1111/j.0022-3646.1984.00083.x
  20. Keser, M., Swenarton, J. T. & Foertch, J. F. 2005. Effects of thermal input and climate change on growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in eastern Long Island Sound (USA). J. Sea Res. 54:211-220. https://doi.org/10.1016/j.seares.2005.05.001
  21. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. https://doi.org/10.1007/s10811-006-9150-7
  22. Lazo, L., Markham, J. H. & Chapman, A. R. O. 1994. Herbivory and harvesting: effects on sexual recruitment and vegetative modules of Ascophyllum nodosum. Ophelia 40:95-113.
  23. MacFarlane, C. 1933. Observations on the annual growth of Ascophyllum nodosum. Proc. N. S. Inst. Sci. 18:27-33.
  24. MacFarlane, C. 1952. A survey of certain seaweeds of commercial importance in southwest Nova Scotia. Can. J. Bot. 30:78-97. https://doi.org/10.1139/b52-008
  25. MacFarlane, C. 1964. The seaweed industry of the Maritime Provinces. In De Virville, A. D. & Feldman, J. (Eds.) Proc. 4th Int. Seaweed Symp., Pergamon Press, Oxford, pp. 414-419.
  26. MacFarlane, C. 1966. A report on some aspects of the seaweed industry in the Maritime Provinces of Canada. Industrial Development Service, Department of Fisheries of Canada, Ottawa, ON, 27 pp.
  27. Mathieson, A. C., Shipman, J. W., O'shea, J. R. & Hasevlat, R. C. 1976. Seasonal growth and reproduction in estuarine fucoid algae in New England. J. Exp. Mar. Biol. Ecol. 25:273-284. https://doi.org/10.1016/0022-0981(76)90129-5
  28. McLean, A. M. 2007. Morphological trends in the brown alga Ascophyllum nodosum from Nova Scotia, Canada and Loch Maddy, Scotland. B.Sc. Honours thesis, St. Francis Xavier University, Antigonish, NS, Canada.
  29. Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Hailing, C., Shpigel, M. & Yarish, C. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015
  30. Pavia, H., Toth, G. & Aberg, P. 1999. Trade-offs between phlorotannin production and annual growth in natural populations of the brown seaweed Ascophyllum nodosum. J. Ecol. 87:761-771. https://doi.org/10.1046/j.1365-2745.1999.00397.x
  31. Sharp, G. J. & Semple, R. E. 1990. An assessment of Ascophyllum nodosum resources in Scotia/Fundy 1990. Canadian Atlantic Fisheries Scientific Advisory Committee Research Document 91/52. Canadian Atlantic Fisheries Scientific Advisory Committee, Edmonton, AB, 30 pp.
  32. Stengel, D. B. & Dring, M. J. 1997. Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur. J. Phycol. 32:193-202. https://doi.org/10.1080/09670269710001737129
  33. Ugarte, R. A. & Sharp, G. 2001. A new approach to seaweed management in eastern Canada: the case of Ascophyllum nodosum. Cah. Biol. Mar. 42:63-70.
  34. Ugarte, R. A., Sharp, G. & Moore, B. 2006. Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. plant morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. J. Appl. Phycol. 18:351-359. https://doi.org/10.1007/s10811-006-9044-8
  35. Vadas, R. L. & Wright, W. A. 1986. Recruitment, growth and management of Ascophyllum nodosum. In Westemeier, R. (Ed.) Actas II Segundo Congresso Algas Marinas Chilenas, Southern University of Chile, Valdivia, pp. 101-113.
  36. Vadas, R. L., Wright, W. A. & Beal, B. F. 2004. Biomass and productivity of intertidal rockweeds (Ascophyllum nodosum Le Jolis) in Cobscook Bay. Northeast. Nat. 11(special issue 2):123-142. https://doi.org/10.1656/1092-6194(2004)011[0123:BBASCS]2.0.CO;2
  37. Xu, H., Deckert, R. J. & Garbary, D. J. 2008. Ascophyllum and its symbionts. X. Ultrastructure of the interactions between A. nodosum (Phaeophyceae) and Mycophycias ascophylli (Ascomycetes). Botany 86:185-193. https://doi.org/10.1139/B07-122
  38. Ye, N., Zhang, X., Mao, Y., Liang, C., Xu, D., Zou, J., Zhuang, Z. & Wang, Q. 2011. 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol. Res. 26:477-485. https://doi.org/10.1007/s11284-011-0821-8
  39. Zar, J. H. 1999. Biostatistical analysis. 4th ed. Prentice-Hall, Englewood Cliffs, NJ, 662 pp.

Cited by

  1. Bioremediation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal vol.24, pp.3, 2012, https://doi.org/10.1007/s10811-011-9734-8
  2. Interactive effects of increasing temperature and nutrient loading on the habitat-forming rockweed Ascophyllum nodosum vol.133, 2016, https://doi.org/10.1016/j.aquabot.2016.06.002
  3. Marine finfish effluent bioremediation: Effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta) vol.414-415, 2013, https://doi.org/10.1016/j.aquaculture.2013.08.008
  4. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system vol.29, pp.1, 2014, https://doi.org/10.4490/algae.2014.29.1.035
  5. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent vol.26, pp.5, 2014, https://doi.org/10.1007/s10811-014-0247-0
  6. Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: a preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds vol.29, pp.3, 2014, https://doi.org/10.4490/algae.2014.29.3.227
  7. Regional differences and linkage between canopy structure and community composition of rockweed habitats in Atlantic Canada vol.163, pp.12, 2016, https://doi.org/10.1007/s00227-016-3027-3
  8. Inferring the potential for nitrogen toxicity on seagrass in the vicinity of an aquaculture site using mathematical models vol.282, pp.None, 2011, https://doi.org/10.1016/j.jenvman.2020.111921