• Title/Summary/Keyword: SPATIAL IMAGE

Search Result 3,289, Processing Time 0.031 seconds

Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images (다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1107-1115
    • /
    • 2019
  • Satellite data play a major role in supporting knowledge about forest fire by delivering rapid information to map areas damaged. This study, we used 7 Sentinel-2A images to detect change area in forests of Sokcho on April 4, 2019. The process of classify forest fire severity used 7 levels from Sentinel-2A dNBR(differenced Normalized Burn Ratio). In the process of classifying forest fire damage areas, the study selected three areas with high regrowth of vegetation level and conducted a detailed spatial analysis of the areas concerned. The results of dNBR analysis, regrowth of coniferous forest was greater than broad-leaf forest, but NDVI showed the lowest level of vegetation. This is the error of dNBR classification of dNBR. The results of dNBR time series, an area of forest fire damage decreased to a large extent between April 20th and May 3rd. This is an example of the regrowth by developing rare-plants and recovering broad-leaf plants vegetation. The results showed that change area was detected through the change detection of danage area by forest category and the classification errors of the coniferous forest were reached through the comparison of NDVI and dNBR. Therefore, the need to improve the precision Korean forest fire damage rating table accompanied by field investigations was suggested during the image classification process through dNBR.

A Comparative Analysis for the Digitizing Accuracy by Satellite Images for Efficient Shoreline Extraction (효율적인 해안선 추출을 위한 위성영상별 디지타이징 정확도 비교 분석)

  • Kim, Dong-Hyun;Park, Ju-Sung;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.147-155
    • /
    • 2015
  • The existing field survey and aerial photography involve the waste of manpower and economic loss in the coastline survey. To minimize these disadvantages, the digitization for efficient coastline extraction was conducted in this study using the points extracted from the standard coastline of the approximate highest high water and the diverse satellite images (KOMPSAT-3, SPOT-5, Landsat-8 and Quickbird-2), and the comparative accuracy analysis was conducted. The differences between the standard coastline points of the approximate highest high water and the coastline of each satellite were smallest for KOMPSAT-3, followed by Quickbird-2, SPOT-5 and Landsat-8. The significant probability from between the multipurpose applications satellite and Quickbird-2 (significant probability two-tailed) was statistically significant at 1% significance level. Therefore, high-resolution satellite images are required to efficiently extract the coastline, and KOMPSAT-3, from which images are easily acquired at a low cost, will enable the most efficient coastline extraction without external support.

Development of a Remotely Sensed Image Processing/Analysis System : GeoPixel Ver. 1.0 (JAVA를 이용한 위성영상처리/분석 시스템 개발 : GeoPixel Ver. 1.0)

  • 안충현;신대혁
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.13-30
    • /
    • 1997
  • Recent improvements of satellite remote sensing sensors which are represented by hyperspectral imaging sensors and high spatial resolution sensors provide a large amount of data, typically several hundred megabytes per one scene. Moreover, increasing information exchange via internet and information super-highway requires the developments of more active service systems for processing and analysing of remote sensing data in order to provide value-added products. In this sense, an advanced satellite data processing system is being developed to achive high performance in computing speed and efficieney in processing a huge volume of data, and to make possible network computing and easy improving, upgrading and managing of systems. JAVA internet programming language provides several advantages for developing software such as object-oriented programming, multi-threading and robust memory managent. Using these features, a satellite data processing system named as GeoPixel has been developing using JAVA language. The GeoPixel adopted newly developed techniques including object-pipe connect method between each process and multi-threading structure. In other words, this system has characteristics such as independent operating platform and efficient data processing by handling a huge volume of remote sensing data with robustness. In the evaluation of data processing capability, the satisfactory results were shown in utilizing computer resources(CPU and Memory) and processing speeds.

Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data (MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축)

  • Jeong, Seung-Gyu;Park, Chong-Hwa;Kim, Sang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.553-563
    • /
    • 2006
  • This study aims to produce land-cover maps of Korean peninsula using multi-temporal MODIS (Moderate Resolution Imaging Spectroradiometer) imagery. To solve the low spatial resolution of MODIS data and enhance classification accuracy, Linear Spectral Mixture Analysis (LSMA) was employed. LSMA allowed to determine the fraction of each surface type in a pixel and develop vegetation, soil and water fraction images. To eliminate clouds, MVC (Maximum Value Composite) was utilized for vegetation fraction and MinVC (Minimum Value Composite) for soil fraction image respectively. With these images, using ISODATA unsupervised classifier, southern part of Korean peninsula was classified to low and mid level land-cover classes. The results showed that vegetation and soil fraction images reflected phenological characteristics of Korean peninsula. Paddy fields and forest could be easily detected in spring and summer data of the entire peninsula and arable land in North Korea. Secondly, in low level land-cover classification, overall accuracy was 79.94% and Kappa value was 0.70. Classification accuracy of forest (88.12%) and paddy field (85.45%) was higher than that of barren land (60.71%) and grassland (57.14%). In midlevel classification, forest class was sub-divided into deciduous and conifers and field class was sub-divided into paddy and field classes. In mid level, overall accuracy was 82.02% and Kappa value was 0.6986. Classification accuracy of deciduous (86.96%) and paddy (85.38%) were higher than that of conifers (62.50%) and field (77.08%).

Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields (논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석)

  • Eun, Jeong;Kim, Sun-Hwa;Kim, Taeho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1545-1557
    • /
    • 2021
  • Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In thisstudy, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needsto be adjusted according to the domestic region.

Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data (산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1389-1403
    • /
    • 2021
  • Disaster management using VHR (very high resolution) satellite images supports rapid damage assessment and also offers detailed information of the damages. However, the acquisition of pre-event VHR satellite images is usually limited due to the long revisit time of VHR satellites. The absence of the pre-event data can reduce the accuracy of damage assessment since it is difficult to distinguish the changed region from the unchanged region with only post-event data. To address this limitation, in this study, we conducted the wildfire-induced change detection on national wildfire cases using post-fire VHR satellite images and GIS (Geographic Information System) data. For GIS data, a national land cover map was selected to simulate the pre-fire NIR (near-infrared) images using the spatial information of the pre-fire land cover. Then, the simulated pre-fire NIR images were used to analyze bi-temporal NDVI (Normalized Difference Vegetation Index) correlation for unsupervised change detection. The whole process of change detection was performed on a superpixel basis considering the advantages of superpixels being able to reduce the complexity of the image processing while preserving the details of the VHR images. The proposed method was validated on the 2019 Gangwon wildfire cases and showed a high overall accuracy over 98% and a high F1-score over 0.97 for both study sites.

A Study on the Development of Visual Arts Convergence Education Model with the Formless Concept (비정형 개념에 따른 시각예술 융합교육 모형 개발)

  • Cho, Hyun Geun
    • Korea Science and Art Forum
    • /
    • v.37 no.2
    • /
    • pp.275-292
    • /
    • 2019
  • This study was initiated with the attention of demanding new and diverse approaches, we're talking familiar with imitations in the design process like a way to draw a image. So I studied a convergence of humanities and visual arts with the understanding and conceptual approach of the formless. The purpose of this study is to develop formless languages and to organize practical courses which are to enable deeper research and design expression on theoretical approaches and explanations of outcomes required before and after the process when we practice in connection with the formless. The method of this study is to draw detailed items from selected words through advanced researches, work and author researches and practice teaching. The results of the study I proposed the formless language that is related to the horizontality in spatial positioning system, and pulse in the separation of space and time, and entropy in structural orders of the system, and base materialism in the limitation of matter as the operating mechanism and parent item of formless. And those elements are related with shape, size, shading, color, texture, space, structure as visual elements of formative elements and those have various adjectival meanings as the subordinate concept. So I presented an education materials of basic design which is to enable understanding and expressing the formless language in the overall process of formless visual art(theoretical approach, practice course, presentation, etc.). Based on these study results, I hope that this educational materials will be used as educational contents that makes them express and understand different new beauties, and a role that reveals social identity, and a reference for research on a formless visual arts.

A Study on the Resolution Analysis of Digital X-ray Images with increasing Thickness of PMMA (조직 등가물질 두께 증가에 따른 디지털 엑스선 영상의 해상도 분석에 관한 연구)

  • Kim, Junwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • Scattered x-ray generated by digital radiography systems also have the advantage of increasing signals, but ultimately detectability is reduced by decreasing resolution and increasing noise of x-ray images transmitted objects. An indirect method of measuring scattered x-ray in a modulation-transfer function (MTF) for evaluating resolution in a spatial-frequency domain can be considered as a drop in the MTF value corresponding to zero-frequency. In this study, polymethyl methacrylate (PMMA) was used as a patient tissue equivalent, and MTFs were obtained for various thicknesses to quantify the effect of scattered x-ray on resolution. X-ray image signals were observed to decrease by 35 ~ 83% with PMMA thickness increasing, which is determined by the absorption or scattering of x-rays in PMMA, resulting in reduced MTF and increased scatter fraction. The method to compensate for MTF degradation by PMMA resulted in the MTF inflation without considering the optical spreading generated by the indirect-conversion type detector. Data fitting or zero-padding are needed to compensate for MTF more reasonably on edge-spread function or line-spread function.

Optical Design of a Subminiature Catadioptric Omnidirectional Optical System with an LED Illumination System for a Capsule Endoscope (LED 조명계를 결합한 캡슐내시경용 초소형 반사굴절식 전방위 광학계의 설계)

  • Moon, Tae Sung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • A subminiature catadioptric omnidirectional optical system (SCOOS) with 2 mirrors, 6 plastic aspherical lenses, and an illumination system of 6 light emitting diodes, to observe the 360° panoramic image of the inner intestine, is optically designed and evaluated for a capsule endoscope. The total length, overall length, half field of view (HFOV), and F-number of the SCOOS are 14.3 mm, 8.93 mm, 51°~120°, and 3.5, respectively. The optical system has a complementary metal-oxide-semiconductor sensor with 0.1 megapixels, and an illumination system of 6 light-emitting diodes (LEDs) with 0.25 lm to illuminate on the 360° side view of the intestine along the optical axis. As a result, the spatial frequency at the modulation transfer function (MTF) of 0.3, the depth of focus, and the cumulative probability of tolerance at the Nyquist frequency of 44 lp/mm and MTF of 0.3 of the optimized optical system are obtained as 130 lp/mm, -0.097 mm to +0.076 mm, and 90.5%, respectively. Additionally, the simulated illuminance of the LED illumination system at the inner surface of the intestine within HFOV, at a distance of 15.0 mm from the optical axis, is from a minimum of 315 lx to a maximum of 725 lx, which is a sufficient illumination and visibility.

A Study on Photovoltaic Panel Monitoring Using Sentinel-1 InSAR Coherence (Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구)

  • Yoon, Donghyeon;Lee, Moungjin;Lee, Seungkuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Photovoltaic panels are hazardous electronic waste that has heavy metal as one of the hazardous components. Each year, hazardous electronic waste is increasing worldwide and every heavy rainfall exposes the photovoltaic panel to become the source of heavy metal soil contamination. the development needs a monitoring technology for this hazardous exposure. this research use relationships between SAR temporal baseline and coherence of Sentinel-1 satellite to detected photovoltaic panel. Also, the photovoltaic plant detection tested using the difference between that photovoltaic panel and the other difference surface of coherence. The author tested the photovoltaic panel and its environment to calculate differences in coherence relationships. As a result of the experiment, the coherence of the photovoltaic panel, which is assumed to be a permanent scatterer, shows a bias that is biased toward a median value of 0.53 with a distribution of 0.50 to 0.65. Therefore, further research is needed to improve errors that may occur during processing. Additionally, the author found that the change detection using a temporal baseline is possible as the rate of reduction of coherence of photovoltaic panels differs from those of artificial objects such as buildings. This result could be an efficient way to continuously monitor regardless of weather conditions, which was a limitation of the existing optical satellite image-based photovoltaic panel detection research and to understand the spatial distribution in situations such as photovoltaic panel loss.