• 제목/요약/키워드: SP-Power

검색결과 294건 처리시간 0.039초

DVS 기반 멀티미디어 프로세서의 전력절감율 분석 (Analysis of Power Saving Factor for a DVS Based Multimedia Processor)

  • 김병일;장태규
    • 대한전자공학회논문지SP
    • /
    • 제42권1호
    • /
    • pp.95-100
    • /
    • 2005
  • 본 논문에서는 멀티미디어 프로세서의 전력 소모를 효과적으로 줄이기 위한 DVS 기법을 제안하였다. 전력 절감율의 유효 범위는 멀티미디어 프로세서의 프레임 기반 연산량이 가우시안 분포로 가정하여 해설적으로 유도되었다. 이러한 해석식은 연산량의 평균과 표준편파에 관하여 표현된다. 제안한 DVS 기법의 전력 절감을 실험을 통해 확인하기 위하여 MPEG-2 비디오 디코더 알고리즘과 MPEG-2 AAC 인코더 알고리즘을 ARM9 프로세서에서 수행하였다. 다양한 MPEG-2 비디오 및 오디오 파일들을 이용한 실험 결과, 50~30% 정도의 전력 절감을 얻었고, 이는 해석적으로 유도된 결과와 거의 일치함을 확인하였다.

전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서 (Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties)

  • 정희돈;권영각;장래웅
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

발전설비 강 용접부의 크리프 특성 평가 기술 개발 (Development of Creep Properties Evaluation Technique for Steel Weldment of Power Plant)

  • 이동환;정영훈;백승세;하정수;송기욱;이송인;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.180-185
    • /
    • 2001
  • In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation.

  • PDF

800V급 4H-SiC DMOSFET 전력 소자 구조 최적화 시뮬레이션 (A simulation study on the structural optimization of a 800V 4H-SiC Power DMOSFET)

  • 최창용;강민석;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.35-36
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to obtain a low threshold voltage ($V_{TH}$) and a high figure of merit ($V_B^2/R_{SP,ON}$). To optimize the device performance, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. These parameters are optimized using 2D numerical simulation and the 4H-SiC DMOSFET structure results in a threshold voltage ($V_{TH}$) below ~3.8V, and high figure of merit ($V_B^2/R_{SP,ON}$>${\sim}200MW/cm^2$) for a power MOSFET in $V_B$-800V range.

  • PDF

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구 (A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I) (A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Extended Trench Gate Superjunction Lateral Power MOSFET for Ultra-Low Specific on-Resistance and High Breakdown Voltage

  • Cho, Doohyung;Kim, Kwangsoo
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.829-834
    • /
    • 2014
  • In this paper, a lateral power metal-oxide-semiconductor field-effect transistor with ultra-low specific on-resistance is proposed to be applied to a high-voltage (up to 200 V) integrated chip. The proposed structure has two characteristics. Firstly, a high level of drift doping concentration can be kept because a tilt-implanted p-drift layer assists in the full depletion of the n-drift region. Secondly, charge imbalance is avoided by an extended trench gate, which suppresses the trench corner effect occurring in the n-drift region and helps achieve a high breakdown voltage (BV). Compared to a conventional trench gate, the simulation result shows a 37.5% decrease in $R_{on.sp}$ and a 16% improvement in BV.

Design and Characteristics of Modern Power MOSFETs for Integrated Circuits

  • 방연섭
    • 전자공학회지
    • /
    • 제37권8호
    • /
    • pp.50-59
    • /
    • 2010
  • $0.18-{\mu}m$ high voltage technology 13.5V high voltage well-based symmetric EDMOS isolated by MTI was designed and fabricated. Using calibrated process and device model parameters, the characteristics of the symmetric and asymmetric EDMOS have been simulated. The asymmetric EDMOS has higher performance, better $R_{sp}$ / BVDSS figure-of-merit, short-channel immunity and smaller pitch size than the symmetric EDMOS. The asymmetric EDMOST is a good candidate for low-power and smaller source driver chips. The low voltage logic well-based EDMOS process has advantages over high voltage well-based EDMOS in process cost by eliminating the process steps of high-voltage well/drift implant, high-temperature long-time thermal steps, etc. The specific on-resistance of our well-designed logic well-based EDMOSTs is compatible with the smallest one published. TCAD simulation and measurement results show that the improved logic well-based nEDMOS has better electrical characteristics than those of the conventional one. The improved EDMOS proposed in this paper is an excellent candidate to be integrated with low voltage logic devices for high-performance low-power low-cost chips.

  • PDF

Design of Main Body and Edge Termination of 100 V Class Super-junction Trench MOSFET

  • Lho, Young Hwan
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.565-569
    • /
    • 2018
  • For the conventional power MOSFET (metal-oxide semiconductor field-effect transistor) device structure, there exists a tradeoff relationship between specific on-state resistance (Ron,sp) and breakdown voltage (BV). In order to overcome this tradeoff, a super-junction (SJ) trench MOSFET (TMOSFET) structure with uniform or non-uniform doping concentration, which decreases linearly in the vertical direction from the N drift region at the bottom to the channel at the top, for an optimal design is suggested in this paper. The on-state resistance of $0.96m{\Omega}-cm2$ at the SJ TMOSFET is much less than that at the conventional power MOSFET under the same breakdown voltage of 100V. A design methodology for the edge termination is proposed to achieve the same breakdown voltage and on-state resistance as the main body of the super-junction TMOSFET by using of the SILVACO TCAD 2D device simulator, Atlas.

USC 발전설비 용접부 HAZ 조직의 내 크리프 특성 (Characterization of Creep Resistance for HAZ Structures in Weldment of USC Power Plant)

  • 백승세;박정훈;이송인;권일현;이동환;양성모;유효선
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.250-252
    • /
    • 2005
  • T/P92 steels are created for using USC boiler tube and header in next generation power plant. SP-Creep test and tensile creep test are performed to characterize creep for local structures of T/P92 steel weldment. The results are shown that P92 steel weldment is clearly superior than that of X20CrMoV121 steel weldment, which is widely used in supercritical power Plant. while fine gram HAZ is most weakest in X20 steel weldment, coarse grain HAZ is most weakest in P92.

  • PDF