• Title/Summary/Keyword: SONAR Sensing

Search Result 37, Processing Time 0.023 seconds

Observation of Juvenile Southern Bluefin Tuna (Thunnus maccoyi C.) School Response to the Approaching Vessel Using Scanning Sonar

  • Lee Yoo-Won;Miyashita Kazushi;Nishida Tsutomu;Harada Sei-Ichiro;Mukai Tohru;Iida Kohji
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.206-211
    • /
    • 2002
  • The aim of this study was to obtain the basic data on the fish school behavior change to approaching vessel and fish species identification by means of their swimming speed. The surveys were carried out for the juvenile southern blue fin tuna and other fish schools off Esperance, western Australia from January to March 1999. We observed changes of fish school behavior in response to the approaching vessel using 360-degree scanning sonar. The results showed that, a horizontal direction index used to quantify a change of fish school behavior did not identify dependence of a radial distance and a swimming speed. A Mann­Whitney test conducted using the horizontal swimming speed of both species identified by sonar specialists, did not reveal a significant difference.

A Digital Bathymetric Model combining Multi Beam Echo Sounder and Sidescan Sonar

  • Park, Jo-Seph;Kim, Hik-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.330-330
    • /
    • 2002
  • The combination of Multi-Beam Echo Sounder swath bathymetry and high-resolution towed Sidescan sonar provides a powerful method of examination about hydrographic survey results. In this paper, we investigate the fast method of 3D bathymetric reconstruction with the Digital Sidescan sonar(Benthos SIS 1500) and Shallow Multi-Beam Echo Sounder(Reson Seabat 8125). The Seabat 8125 is a 455KHz high resolution focused Multibeam echo sounder(MBES) system which measures the relative water depth across a wide swath perpendicular to a vessel's track. The Benthos SIS1500 is a chirp(nominal fq. 200KHz) sonar which map the topographical features & sediment texture of ocean bottom using backscattered amplitude. We generates the very large 3D bathymetric texture mapping model with the Helical System's HHViewer and describes additional benefits of combining MBES and Sidescan Sonar imagery, the removal of geometric distortions in the model and a deterministic sounding noise.

  • PDF

Relocation of a Mobile Robot Using Sparse Sonar Data

  • Lim, Jong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 2001
  • In this paper, the relocation of a mobile robot is considered such that it enables the robot to determine its position with respect to a global reference frame without any $\alpha$ priori position information. The robot acquires sonar range data from a two-dimensional model composed of planes, corners, edges, and cylinders. Considering individual range as data features, the robot searches the best position where the data features of a position matches the environmental model using a constraint-based search method. To increase the search efficiency, a hypothesize and-verify technique is employed in which the position of the robot is calculated from all possible combinations of two range returns that satisfy the sonar sensing model. Accurate relocation is demonstrated with the results from sets of experiments using sparse sonar data in the presence of unmodeled objects.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising (Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱)

  • Lee, Bokyeung;Ku, Bonwha;Kim, Wan-Jin;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.246-254
    • /
    • 2020
  • In this paper, we propose a learning based compressive sensing algorithm for the purpose of side scan sonar image denoising. The proposed method is based on Iterative Shrinkage and Thresholding Algorithm (ISTA) framework and incorporates a powerful strategy that reinforces the non-linearity of deep learning network for improved performance. The proposed method consists of three essential modules. The first module consists of a non-linear transform for input and initialization while the second module contains the ISTA block that maps the input features to sparse space and performs inverse transform. The third module is to transform from non-linear feature space to pixel space. Superiority in noise removal and memory efficiency of the proposed method is verified through various experiments.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Development of Algorithms for Correcting and Mapping High-Resolution Side Scan Sonar Imagery (고해상도 사이드 스캔 소나 영상의 보정 및 매핑 알고리즘의 개발)

  • 이동진;박요섭;김학일
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 2001
  • To acquire seabed information, the mosaic images of the seabed were generated using Side Scan Sonar. Short time energy function which is needed for slant range correction is proposed to get the height of Tow-Fish to the reflected acoustic amplitudes of each ping, and that leads to a mosaic image without water column. While generating mosaic image, maximum value, last value and average value are used for the measure of a pixel in the mosaic image and 3-D information was kept by using acoustic amplitudes which were heading for specific direction. As a generating method of mosaic image, low resolution mosaic image which is over 1m/pixel resolution was generated for whole survey area first, and then high resolution mosaic image which is generated under 0.1m/pixel resolution was generated for the selected area. Rocks, ripple mark, sand wave, tidal flat and artificial fish reef are found in the mosaic image.

Design of range measurement systems using a sonar and a camera (초음파 센서와 카메라를 이용한 거리측정 시스템 설계)

  • Moon, Chang-Soo;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.116-124
    • /
    • 2005
  • In this paper range measurement systems are designed using an ultrasonic sensor and a camera. An ultrasonic sensor provides the range measurement to a target quickly and simply but its low resolution is a disadvantage. We tackle this problem by employing a camera. Instead using a stereoscopic sensor, which is widely used for 3D sensing but requires a computationally intensive stereo matching, the range is measured by focusing and structured lighting. In focusing a straightforward focusing measure named as MMDH(min-max difference in histogram) is proposed and compared with existing techniques. In the method of structure lighting, light stripes projected by a beam projector are used. Compared to those using a laser beam projector, the designed system can be constructed easily in a low-budget. The system equation is derived by analysing the sensor geometry. A sensing scenario using the systems designed is in two steps. First, when better accuracy is required, measurements by ultrasonic sensing and focusing of a camera are fused by MLE(maximum likelihood estimation). Second, when the target is in a range of particular interest, a range map of the target scene is obtained by using structured lighting technique. The systems designed showed measurement accuracy up to 0.3[mm] approximately in experiments.