• 제목/요약/키워드: SOM 알고리즘

검색결과 100건 처리시간 0.023초

퍼셉트론 형태의 SOM : SOM의 일반화 (Perceptron-like SOM : Generalization of SOM)

  • 송근배;이행세
    • 한국정보처리학회논문지
    • /
    • 제7권10호
    • /
    • pp.3098-3104
    • /
    • 2000
  • 본 논문에서는 퍼셉트론 형태의 SOM(PSOM)을 정의한다. 그리고 이 PSOM의 출력뉴런의 목표 값을 적당히 설정할 경우 PSOM은 Kohonen's SOM이 됨을 보인다. 이는 PSOM가 SOM의 일반화된 알고리즘임을 시사한다. 또한 클러스터링 문제를 단위 초구면상(Hyperphere)에 분포한 벡터들로 한정할 경우 SOM은 Dot-product SOM(DSOM)과 동등한 알고리즘임을 보인다. 즉, DSOM은 SOM의 특수한 형태이며, 결론적으로, PSOM은 DSOM도 포함하는 알고리즘이다. 본 논문에서는 이를 증명하고 결론을 맺는다.

  • PDF

유전자 알고리즘과 SOM 알고리즘을 이용한 효율적 경로 탐색 (Efficient Path Search Method using Genetic Algorithm and SOM Algorithm)

  • 정지인;엄도성;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.87-90
    • /
    • 2011
  • 본 논문에서는 유전자 알고리즘에 SOM 알고리즘을 적용하여 효율적으로 경로를 탐색할 수 있는 방법을 제안한다. 제안된 경로 탐색 방법은 효율적인 경로 탐색에 앞서 유전자 알고리즘에 의해 도출된 각각의 결과 좌표를 뉴런으로 설정하고 각 뉴런들의 모든 거리 값을 SOM 알고리즘에 적용하여 거리에 대한 가중치를 구한다. 뉴런 선택 조건(가장 적은 거리 가중치, 이전에 선택되지 않았던 뉴런)을 만족하는 뉴런 및 해당 뉴런의 이웃 반경 내에 존재하는 뉴런들의 연결 강도를 가우시안 분포(오차율 분포)에 적용하여 변경하고, 가장 강한 연결 강도를 가지는 승자 뉴런에 해당하는 경로를 선택한다. 이러한 과정을 뉴런의 개수만큼 반복하여 모든 뉴런들의 경로를 도출한다. 제안된 방법을 실험한 결과, 기존의 유전자 알고리즘을 이용한 방법보다 제안된 방법이 효율적인 경로를 탐색하는 것을 확인할 수 있었다.

  • PDF

승자 노드의 빈도 수를 이용한 개선된 SOM 알고리즘 (Enhanced SOM Algorithm by Using Frequency Number of Winner Node)

  • 이준행;김재용;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.268-271
    • /
    • 2003
  • SOM 알고리즘에서 가중치 조정은 입력 벡터와 승자 노드의 대표 벡터간의 차이만큼 조정되고 승노드의 대표벡터에 입력벡터의 정보를 반영하게 된다. 여기서 그 정보를 반영할 때 입력벡터와 승자노드의 대표 벡터간에 차이가 크면 승자 노드의 대표 벡터에 입력벡터를 기억시키기 위해 입력 벡터의 정보를 더 많이 반영해야 한다. 이러한 문제점을 개선하기 위해 본 논문에서는 승자 노드의 대표벡터와 입력벡터간의 출력오류를 0과1사이의 정규화된 값으로 출력오류를 계산하여 학습률을 조정하고 승자 노드의 저 활용 문제를 개선하기 위해 학습 중에 각 승자 노드의 대표 벡터들이 수정되고 선택되어지는 횟수가 가능한 동등해지도록 각 노드의 승자 빈도수를 가중치 조정에 반영하는 개선된 SOM 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 평가하기 위해 주민등록증에서 추출한 숫자 패턴 50개를 대상으로 실험한 결과, 제안된 방법의 인식 성능이 기존의 SOM 알고리즘보다 개선된 것을 확인하였다.

  • PDF

디지털 영상 객체의 불투명도 추정을 위한 SOM Matting (SOM Matting for Alpha Estimation of Object in a Digital Image)

  • 박현준;차의영
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1981-1986
    • /
    • 2009
  • 본 논문은 인공신경망을 이용한 새로운 매팅 기법을 제안한다. 매팅이란 영상에서 객체의 불투명도를 추정하는 기술이다. 매팅 기법을 이용하면 객체를 자연스럽게 추출할 수 있다. 먼저 trimap을 이용하여 영상을 배경 영역, 전경 영역, 미지 영역으로 구분한다. 배경 영역과 전경 영역의 정보를 이용하여 미지 영역 화소의 불투명도를 추정한다. 제안하는 알고리즘은 배경 영역과 전경 영역의 정보를 SOM을 이용하여 학습하고 그 결과를 이용하여 미지 영역의 각 화소의 불투명도를 추정한다. 본 논문에서는 배경 영역과 전경 영역의 정보를 학습하는 방법에 따라서 전역적 SOM matting과 지역적 SOM matting으로 구별한다. 제안하는 알고리즘의 성능을 평가하기 위하여 영상에 적용해보았다. 이를 통해 제안하는 알고리즘이 객체를 영상에서 분리 가능함을 확인 할 수 있다.

양자화 기법과 퍼지 기반 SOM 알고리즘을 이용한 CT 영상에서의 간 영역과 간 종양 검출 및 분석 (Detection and Analysis of the liver Area and liver tumors in CT Images using Quantization Method and Fuzzy based-SOM Algorithm)

  • 전태룡;정경훈;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.63-74
    • /
    • 2007
  • 간은 인체의 생명을 유지하고 성장할 수 있도록 하는 영양섭취와 매우 밀접한 관계를 가진 중요한 장기이다. 이러한 간의 중요성에도 불구하고 현재 우리나라의 간암 발병률이 세계에서 가장 높은 수치를 기록하고 있으며 이에 따라 간암을 조기 진단하고 예방할 수 있는 방법의 중요성이 확대되고 있다. 따라서 본 논문에서는 영상 의학적 검사 방법 중 하나인 CT 촬영으로 획득된 조영 증강 CT 영상에서 간 영역과 간 종양 영역을 정확히 검출하고 간 종양의 악성도를 판별할 수 있는 방법을 제안한다. 흉부로부터 5mm 간격으로 약 $40\;{\sim}\;50$장 정도로 촬영한 조영 증강 CT 영상에서 명암도와 명암의 분포도를 이용한 양자화 기법과 장기들의 위치 및 형태학적 특징정보, 그리고 흉부와 복부 양방향으로 인접한 CT 영상들의 정보를 분석하여 간 영역을 검출한다. 간 종양 영역은 과혈관성 종양의 특징을 분석하고 간 영역의 검출 방법에 적용하여 추출한다. 추출된 간 종양 영역은 퍼지 기반 SOM 알고리즘을 제안하여 간 종양의 악성도를 분석하는데 적용한다. 제안된 퍼지 기반 SOM 알고리즘은 SOM의 이웃 반경을 동적으로 조정하는데 퍼지 제어 기법을 적용하여 기존의 SOM 알고리즘보다 종양의 악성 정도를 분류하는 정확성을 개선하였다. 제시된 간 영역과 간 종양 검출 및 분석 방법의 결과와 전문의가 진단한 결과를 비교 분석한 결과, 기존의 간 영역 및 간 종양 영역 검출 방법보다 정확성이 향상된 것을 확인할 수 있었다.

  • PDF

SOM 알고리즘을 이용한 차량 번호판 인식과 주차 관리 시스템 개발 (Recognition of Car Plate using SOM Algorithm and Development of Parking Control System)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1052-1061
    • /
    • 2003
  • 본 논문은 SOM 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리 시스템 개발에 대해서 기술한다. 차량 영상에서 번호판 영역을 추출하기 위해 수평$.$수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 4 방향 윤곽선 추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 SOM 알고리즘을 적용한다. 50개의 실제 차량 영상을 실험한 결과, 제안된 번호판 영역 추출 방법이 기존의 RGB 정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다. 그리고 SOM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 인식 방법을 이용하여 주차 관리 시스템을 개발하였다.

확률적 자율 학습을 위한 베이지안 모델 (Bayesian Model for Probabilistic Unsupervised Learning)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.849-854
    • /
    • 2001
  • Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.

  • PDF

SOM의 2단계학습을 이용한 항공영상 클러스터링 (Areal Image Clustering using SOM with 2 Phase Learning)

  • 이경희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.995-998
    • /
    • 2013
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self Organization Map) 신경회로망에 2단계의 학습과정을 활용하여 항공영상에서 물체를 인근의 물체와 효과적으로 구별하기 위한 접근방법을 제안하고 실제의 항공영상에 적용하여 기존의 고전적인 K-means 알고리즘 및 원래의 SOM 알고리즘보다 우수함을 보인다.

  • PDF

SOM을 이용한 자율주행로봇의 횡 방향 제어에 관한 연구 (A Study on the Steering Control of an Autonomous Robot Using SOM Algorithms)

  • 김영욱;김종철;이경복;한민홍
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.58-65
    • /
    • 2003
  • 기존의 횡 방향제어 알고리즘은 도로에서 발생할 수 있는 변수를 고려하여 알고리즘을 작성해야 했다. 이러한 제어 알고리즘을 작성하기 위해서는 주행해야 하는 도로에 따라 파라미터를 재조정해야 하는 문제와 대량의 계산이 요구되는 모델링 문제가 있었다. 본 논문에서는 지능적 횡 방향제어가 가능한 학습알고리즘에 관해 연구하였다. 학습알고리즘은 인공지능 알고리즘 중 자기구성 알고리즘을 사용하였으며 학습데이터는 도로의 특징점을 이용하였다. 컴퓨터를 이용한 시뮬레이션 결과 본 논문의 학습알고리즘에 의한 조향제어가 가능한 것을 알 수 있었고 실제로 주행이 가능한 자율이동로봇에 적용하여 학습에 의한 횡 방향제어가 가능한 것을 확인하였다.

  • PDF

내용 기반 이미지 검색을 위한 개선된 SIM 방법 (Improved SIM Algorithm for Contents-based Image Retrieval)

  • 김광백
    • 지능정보연구
    • /
    • 제15권2호
    • /
    • pp.49-59
    • /
    • 2009
  • 내용기반 이미지 검색은 색상, 질감 등의 이미지 자체의 자질들을 이용하여 검색하므로 텍스트 기반 이미지 검색의 객관성 부족과 모든 이미지에 사람이 주석을 달아야 하는 단점을 보완할 수 있는 이미지 검색 방법이다. 이러한 내용 기반 이미지 검색에서 사용되는 방식 중 SIM(Self-organizing Image browsing Map) 방식은 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑하고 그 결과를 바탕으로 이미지를 검색하게 된다. 하지만 비슷한 이미지라 할지라도 이미지의 밝기, 피사체의 움직임 등에 의하여 색상 정보가 다르게 나타나게 되면 SOM 알고리즘의 학습 과정에서 유사한 이미지들을 그룹화한 노드를 BMU로 선택하지 못하고 떨어져 있는 다른 노드를 선택하게 된다. 이 경우 학습이 진행되면서 유사한 이미지들이 군집하는 과정을 거치지만 학습이 완료될 때까지 다른 유사 이미지들을 그룹화한 노드에 맵핑이 되지 못하는 경우가 발생한다. 그 결과, 검색 결과에 나타나지 못하여 적합 이미지 검색률이 낮아 질 수 있다. 따라서 본 논문에서는 HSV 색상모델을 이용하여 양자화하고 이미지의 색상 특징 벡터를 추출한 뒤 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑한다. 이때 SIM 방식의 문제점인 유사 이미지가 따로 맵핑되어 적합 이미지 검색률이 낮아지는 것을 줄이기 위하여 SOM을 두 개의 층으로 구성한다. 첫 번째 층에서 이미지의 색상 자질을 이용하여 학습을 완료한 후, 학습이 완료된 첫 번째 층 맵의 각 노드들의 연결 가중치를 이용하여 두 번째 층에서 다시 한번 학습을 수행한다. 두 개의 층으로 학습이 완료된 두 번째 층의 SOM에 질의 이미지의 특징 벡터를 입력하여 BMU를 선택하고 BMU와 연결된 첫 번째 층의 노드를 최종 선택하여 이미지를 검색한다. 실험결과, 제안된 이미지 검색 방법이 기존의 이미지 검색 방법 보다 적합 이미지의 검색 성공률이 높은 것을 확인 할 수 있었다.

  • PDF