본 논문에서는 퍼셉트론 형태의 SOM(PSOM)을 정의한다. 그리고 이 PSOM의 출력뉴런의 목표 값을 적당히 설정할 경우 PSOM은 Kohonen's SOM이 됨을 보인다. 이는 PSOM가 SOM의 일반화된 알고리즘임을 시사한다. 또한 클러스터링 문제를 단위 초구면상(Hyperphere)에 분포한 벡터들로 한정할 경우 SOM은 Dot-product SOM(DSOM)과 동등한 알고리즘임을 보인다. 즉, DSOM은 SOM의 특수한 형태이며, 결론적으로, PSOM은 DSOM도 포함하는 알고리즘이다. 본 논문에서는 이를 증명하고 결론을 맺는다.
본 논문에서는 유전자 알고리즘에 SOM 알고리즘을 적용하여 효율적으로 경로를 탐색할 수 있는 방법을 제안한다. 제안된 경로 탐색 방법은 효율적인 경로 탐색에 앞서 유전자 알고리즘에 의해 도출된 각각의 결과 좌표를 뉴런으로 설정하고 각 뉴런들의 모든 거리 값을 SOM 알고리즘에 적용하여 거리에 대한 가중치를 구한다. 뉴런 선택 조건(가장 적은 거리 가중치, 이전에 선택되지 않았던 뉴런)을 만족하는 뉴런 및 해당 뉴런의 이웃 반경 내에 존재하는 뉴런들의 연결 강도를 가우시안 분포(오차율 분포)에 적용하여 변경하고, 가장 강한 연결 강도를 가지는 승자 뉴런에 해당하는 경로를 선택한다. 이러한 과정을 뉴런의 개수만큼 반복하여 모든 뉴런들의 경로를 도출한다. 제안된 방법을 실험한 결과, 기존의 유전자 알고리즘을 이용한 방법보다 제안된 방법이 효율적인 경로를 탐색하는 것을 확인할 수 있었다.
SOM 알고리즘에서 가중치 조정은 입력 벡터와 승자 노드의 대표 벡터간의 차이만큼 조정되고 승노드의 대표벡터에 입력벡터의 정보를 반영하게 된다. 여기서 그 정보를 반영할 때 입력벡터와 승자노드의 대표 벡터간에 차이가 크면 승자 노드의 대표 벡터에 입력벡터를 기억시키기 위해 입력 벡터의 정보를 더 많이 반영해야 한다. 이러한 문제점을 개선하기 위해 본 논문에서는 승자 노드의 대표벡터와 입력벡터간의 출력오류를 0과1사이의 정규화된 값으로 출력오류를 계산하여 학습률을 조정하고 승자 노드의 저 활용 문제를 개선하기 위해 학습 중에 각 승자 노드의 대표 벡터들이 수정되고 선택되어지는 횟수가 가능한 동등해지도록 각 노드의 승자 빈도수를 가중치 조정에 반영하는 개선된 SOM 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 평가하기 위해 주민등록증에서 추출한 숫자 패턴 50개를 대상으로 실험한 결과, 제안된 방법의 인식 성능이 기존의 SOM 알고리즘보다 개선된 것을 확인하였다.
본 논문은 인공신경망을 이용한 새로운 매팅 기법을 제안한다. 매팅이란 영상에서 객체의 불투명도를 추정하는 기술이다. 매팅 기법을 이용하면 객체를 자연스럽게 추출할 수 있다. 먼저 trimap을 이용하여 영상을 배경 영역, 전경 영역, 미지 영역으로 구분한다. 배경 영역과 전경 영역의 정보를 이용하여 미지 영역 화소의 불투명도를 추정한다. 제안하는 알고리즘은 배경 영역과 전경 영역의 정보를 SOM을 이용하여 학습하고 그 결과를 이용하여 미지 영역의 각 화소의 불투명도를 추정한다. 본 논문에서는 배경 영역과 전경 영역의 정보를 학습하는 방법에 따라서 전역적 SOM matting과 지역적 SOM matting으로 구별한다. 제안하는 알고리즘의 성능을 평가하기 위하여 영상에 적용해보았다. 이를 통해 제안하는 알고리즘이 객체를 영상에서 분리 가능함을 확인 할 수 있다.
간은 인체의 생명을 유지하고 성장할 수 있도록 하는 영양섭취와 매우 밀접한 관계를 가진 중요한 장기이다. 이러한 간의 중요성에도 불구하고 현재 우리나라의 간암 발병률이 세계에서 가장 높은 수치를 기록하고 있으며 이에 따라 간암을 조기 진단하고 예방할 수 있는 방법의 중요성이 확대되고 있다. 따라서 본 논문에서는 영상 의학적 검사 방법 중 하나인 CT 촬영으로 획득된 조영 증강 CT 영상에서 간 영역과 간 종양 영역을 정확히 검출하고 간 종양의 악성도를 판별할 수 있는 방법을 제안한다. 흉부로부터 5mm 간격으로 약 $40\;{\sim}\;50$장 정도로 촬영한 조영 증강 CT 영상에서 명암도와 명암의 분포도를 이용한 양자화 기법과 장기들의 위치 및 형태학적 특징정보, 그리고 흉부와 복부 양방향으로 인접한 CT 영상들의 정보를 분석하여 간 영역을 검출한다. 간 종양 영역은 과혈관성 종양의 특징을 분석하고 간 영역의 검출 방법에 적용하여 추출한다. 추출된 간 종양 영역은 퍼지 기반 SOM 알고리즘을 제안하여 간 종양의 악성도를 분석하는데 적용한다. 제안된 퍼지 기반 SOM 알고리즘은 SOM의 이웃 반경을 동적으로 조정하는데 퍼지 제어 기법을 적용하여 기존의 SOM 알고리즘보다 종양의 악성 정도를 분류하는 정확성을 개선하였다. 제시된 간 영역과 간 종양 검출 및 분석 방법의 결과와 전문의가 진단한 결과를 비교 분석한 결과, 기존의 간 영역 및 간 종양 영역 검출 방법보다 정확성이 향상된 것을 확인할 수 있었다.
본 논문은 SOM 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리 시스템 개발에 대해서 기술한다. 차량 영상에서 번호판 영역을 추출하기 위해 수평$.$수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 4 방향 윤곽선 추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 SOM 알고리즘을 적용한다. 50개의 실제 차량 영상을 실험한 결과, 제안된 번호판 영역 추출 방법이 기존의 RGB 정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다. 그리고 SOM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 인식 방법을 이용하여 주차 관리 시스템을 개발하였다.
Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.
본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self Organization Map) 신경회로망에 2단계의 학습과정을 활용하여 항공영상에서 물체를 인근의 물체와 효과적으로 구별하기 위한 접근방법을 제안하고 실제의 항공영상에 적용하여 기존의 고전적인 K-means 알고리즘 및 원래의 SOM 알고리즘보다 우수함을 보인다.
기존의 횡 방향제어 알고리즘은 도로에서 발생할 수 있는 변수를 고려하여 알고리즘을 작성해야 했다. 이러한 제어 알고리즘을 작성하기 위해서는 주행해야 하는 도로에 따라 파라미터를 재조정해야 하는 문제와 대량의 계산이 요구되는 모델링 문제가 있었다. 본 논문에서는 지능적 횡 방향제어가 가능한 학습알고리즘에 관해 연구하였다. 학습알고리즘은 인공지능 알고리즘 중 자기구성 알고리즘을 사용하였으며 학습데이터는 도로의 특징점을 이용하였다. 컴퓨터를 이용한 시뮬레이션 결과 본 논문의 학습알고리즘에 의한 조향제어가 가능한 것을 알 수 있었고 실제로 주행이 가능한 자율이동로봇에 적용하여 학습에 의한 횡 방향제어가 가능한 것을 확인하였다.
내용기반 이미지 검색은 색상, 질감 등의 이미지 자체의 자질들을 이용하여 검색하므로 텍스트 기반 이미지 검색의 객관성 부족과 모든 이미지에 사람이 주석을 달아야 하는 단점을 보완할 수 있는 이미지 검색 방법이다. 이러한 내용 기반 이미지 검색에서 사용되는 방식 중 SIM(Self-organizing Image browsing Map) 방식은 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑하고 그 결과를 바탕으로 이미지를 검색하게 된다. 하지만 비슷한 이미지라 할지라도 이미지의 밝기, 피사체의 움직임 등에 의하여 색상 정보가 다르게 나타나게 되면 SOM 알고리즘의 학습 과정에서 유사한 이미지들을 그룹화한 노드를 BMU로 선택하지 못하고 떨어져 있는 다른 노드를 선택하게 된다. 이 경우 학습이 진행되면서 유사한 이미지들이 군집하는 과정을 거치지만 학습이 완료될 때까지 다른 유사 이미지들을 그룹화한 노드에 맵핑이 되지 못하는 경우가 발생한다. 그 결과, 검색 결과에 나타나지 못하여 적합 이미지 검색률이 낮아 질 수 있다. 따라서 본 논문에서는 HSV 색상모델을 이용하여 양자화하고 이미지의 색상 특징 벡터를 추출한 뒤 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑한다. 이때 SIM 방식의 문제점인 유사 이미지가 따로 맵핑되어 적합 이미지 검색률이 낮아지는 것을 줄이기 위하여 SOM을 두 개의 층으로 구성한다. 첫 번째 층에서 이미지의 색상 자질을 이용하여 학습을 완료한 후, 학습이 완료된 첫 번째 층 맵의 각 노드들의 연결 가중치를 이용하여 두 번째 층에서 다시 한번 학습을 수행한다. 두 개의 층으로 학습이 완료된 두 번째 층의 SOM에 질의 이미지의 특징 벡터를 입력하여 BMU를 선택하고 BMU와 연결된 첫 번째 층의 노드를 최종 선택하여 이미지를 검색한다. 실험결과, 제안된 이미지 검색 방법이 기존의 이미지 검색 방법 보다 적합 이미지의 검색 성공률이 높은 것을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.