• Title/Summary/Keyword: SOM(Self-Organizing Map) neural networks

Search Result 30, Processing Time 0.03 seconds

Flood Stage Forecasting using Kohonen Self-Organizing Map (코호넨 자기조직화함수를 이용한 홍수위 예측)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1427-1431
    • /
    • 2007
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

Flood Stage Forecasting using Class Segregation Method of Time Series Data (시계열자료의 계층분리기법을 이용한 하천유역의 홍수위 예측)

  • Kim, Sung-Weon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.669-673
    • /
    • 2008
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

A Recommender System Model Combining Collaborative filtering and SOM Neural Networks (협동적 필터링과 SOM 신경망을 결합한 추천시스템 모델)

  • Lee, Mi-Hee;Woo, Young-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1213-1226
    • /
    • 2008
  • A recommender system supports people in making recommendations finding a set of people who are likely to provide good recommendations for a given person, or deriving recommendations from implicit behavior such as browsing activity, buying patterns, and time on task. We proposed new recommender system which combined SOM(Self-Organizing Map) neural networks with the Collaborative filtering which most recommender systems hat applied First, we segmented user groups according to demographic characteristics and then we trained the SOM with people's preferences as ito inputs. Finally we applied the classic collaborative filtering to the clustering with similarity in which an recommendation seeker belonged to, and therefore we didn't have to apply the collaborative filtering to the whose data set. Experiments were run for EachMovies data set. The results indicated that the predictive accuracy was increased in terms of MAE(Mean-Absolute-Error).

  • PDF

Digital Watermarking using the suitable watermark strength and length (최적의 워터마크 강도와 길이를 이용한 디지털 워터마킹)

  • Lee, Young-Hee;Lee, Jung-Hee;Cha, Eui-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.5
    • /
    • pp.77-84
    • /
    • 2006
  • In this paper, we propose an adaptive image watermarking algorithm in DWT domain by using HVS(human Visual system) and SOM(Self-Organizing Map) among neural networks. HVS can be described in terms of two properties of HVS: brightness and texture sensitivity. The SOM is used to obtain the local characteristics of image, Therefore, the suitable strength and length of embedded watermark is determined by using HVS and SOM. The experimental results show that proposed method provides a suitable strength and length of watermark and has good perceptual invisibility and robustness for various attacks.

  • PDF

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

Recognize vowel using self organizing map

  • Jang, Sung-Hwan;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.115.4-115
    • /
    • 2001
  • This paper deals with recognizing ten korean voiced vowels using Self Organizing Map. SOM is a good classifier. The output layer is composed of two dimensions. The input vector is the frequency values having the characteristic of voiced vowels. The short time frequency transform is used getting input vector. The final neural networks is attached SOM output layer.

  • PDF

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Determination of the Optimized Structure of Self-Organizing Map for the Rainfall-Runoff Analysis in Naju (나주지점의 강우-유출 해석을 위한 최적의 SOM 구조 결정)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Jeong, Choen-Lee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.995-1007
    • /
    • 2008
  • Studies on modeling the rainfall-runoff relationship which shows nonlinear trend strongly use artificial neural networks theory not only for the prediction but also for the characteristics analysis of the data used by pattern classification. For the pattern classification, the results from Self-Organizing Map (SOM) mention that the map size and array for the SOM training have significantly influenced on the SOM performance. Since there is no deterministic method or theoretical equation to determine the number of rows and columns for the map size, hexagonal array is generally used for the map array. Therefore, this study present a determination of the optimized map structure for the rainfall-runoff analysis in Naju station considering the map size and array simultaneously which can represent the classified characterization of rainfall-runoff relationship. The result showed that the map size of 20$\times$16 hexagonal array with 8-clustered patterns was selected as an appropriate map structure for rainfall-runoff analysis in Naju station.

A self-organizing neural networks approach to machine-part grouping in cellular manufacturing systems (셀 생산 방식에서 자기조직화 신경망을 이용한 기계-부품 그룹의 형성)

  • 전용덕;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.123-132
    • /
    • 1998
  • The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.

  • PDF

Machine-Part Grouping with Alternative Process Plan - An algorithm based on the self-organizing neural networks - (대체공정이 있는 기계-부품 그룹의 형성 - 자기조직화 신경망을 이용한 해법 -)

  • Jeon, Yong-Deok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.83-89
    • /
    • 2016
  • The group formation problem of the machine and part is a critical issue in the planning stage of cellular manufacturing systems. The machine-part grouping with alternative process plans means to form machine-part groupings in which a part may be processed not only by a specific process but by many alternative processes. For this problem, this study presents an algorithm based on self organizing neural networks, so called SOM (Self Organizing feature Map). The SOM, a special type of neural networks is an intelligent tool for grouping machines and parts in group formation problem of the machine and part. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. In the proposed algorithm, output layer in SOM network had been set as one-dimensional structure and the number of output node has been set sufficiently large in order to spread out the input vectors in the order of similarity. In the first stage of the proposed algorithm, SOM has been applied twice to form an initial machine-process group. In the second stage, grouping efficacy is considered to transform the initial machine-process group into a final machine-process group and a final machine-part group. The proposed algorithm was tested on well-known machine-part grouping problems with alternative process plans. The results of this computational study demonstrate the superiority of the proposed algorithm. The proposed algorithm can be easily applied to the group formation problem compared to other meta-heuristic based algorithms. In addition, it can be used to solve large-scale group formation problems.