• Title/Summary/Keyword: SOLAR cell

Search Result 3,159, Processing Time 0.029 seconds

Analysis and Control of PWM Convertor with V-I Output Chracteristic of Solar Cell (태양전지의 전기적 출력 특성을 갖는 PWM컨버터 설계 및 제어)

  • Yoo J.H;Han J.M;Ryu T.G;Gho J.S;Mok H.S.;Choe G.H
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.53-58
    • /
    • 2001
  • Solar energy has many advantage like as purity and infinity. Recently many researches about new energy source are processing in several places around the world. In this paper, the virtual implement of solar cell was proposed to solve the problems as reappearance and repetition of some situation in experiment of photovoltaic. To realize the VISC, mathematical model of solar cell for driving converter was studied and the buck converter were compared in viewpoint of tracking error of characteristic curve of solar cell using computer simulation. Also, Output characteristics of system analyzed through an experiment.

  • PDF

Development of a flexible solar cell fiber by using an organic-inorganic hybrid materials (${\codt}$ 무기 하이브리드 재료를 이용한 플렉서블 태양전지 섬유의 개발)

  • Song, Jun-Hyung;Kim, Joo-Yong;Park, Jung-Hyun;Kim, Gu-Young;Kim, Young-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.299-301
    • /
    • 2007
  • An organic-inorganic hybrid solar cell fibers with characteristics such as formability, low-cost and tailorability was developed by deposition of C60 and CuPc on fiber surface. In spite of some variation according to the temperature of ITO deposition, the maximum open circuit voltage of 0.39V was attained at $150^{\circ}C$(1000end). The resulting solar cell showed the performances Isc=0.482, Voc=0.320, FF=0.285 ${\eta}_{e}=0.044$% which are comparable to one of other types of solar cells in literature.

  • PDF

A study on the fabrication of poly crystalline Si wafer by vacuum casting method and the measurement of the efficiency of solar cell

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • Si-wafers for solar cells were cast in a size of $50{\times}46{\times}0.5{\textrm}{mm}^3$ by vacuum casting method. The graphite mold coated by BN powder, which was to prevent the reaction of carbon with the molten silicon, was used. Without coating, the wetting and reaction of Si melt to graphite mold was very severe. In the case of BN coating, SiC was formed in the shape of tiny islands at the surface of Si wafer by the reaction between Si-melt and carbon of the graphite mold on the high temperature. The grain size was about 1 mm. The efficiency of Si solar cell was lower than that of Si solar cell fabricated on commercial single and poly crystalline Si wafer. The reason of low efficiency was discussed.

A study on characteristic variation of solar cells as an environment change (태양전지셀의 환경변화에 따른 투과-반사특성 연구)

  • Shin, Sang-Wuk;Lee, Se-Hyun;Cho, Mee-Ryoung;Hwang, Myung-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1201-1202
    • /
    • 2006
  • In this paper, I try to measure characteristic transmission-reflection by environmental change or solar cell. I keep my eye on the characteristics variation of solar cell as environmental change. As a result, A variation caused by voltage by an effect on the efficiency of solar PV cell. Hence, it is an important variable when a designer plan to make a solar cell.

  • PDF

The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers

  • Lee, Da Jung;Yun, Sun Jin;Lee, Seong Hyun;Lim, Jung Wook
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.730-733
    • /
    • 2013
  • In this work, buffer layers with various conditions are inserted at an n/i interface in hydrogenated amorphous silicon semitransparent solar cells. It is observed that the performance of a solar cell strongly depends on the arrangement and thickness of the buffer layer. When arranging buffer layers with various bandgaps in ascending order from the intrinsic layer to the n layer, a relatively high open circuit voltage and short circuit current are observed. In addition, the fill factors are improved, owing to an enhanced shunt resistance under every instance of the introduced n/i buffer layers. Among the various conditions during the arrangement of the buffer layers, a reverse V shape of the energy bandgap is found to be the most effective for high efficiency, which also exhibits intermediate transmittance among all samples. This is an inspiring result, enabling an independent control of the conversion efficiency and transmittance.

The characteristics research of silicon solar cell spectrum response (실리콘 태양전지 분장특성 분석연구)

  • Choi, Seok-Joon;Yang, Seung-Yong;Hwang, Myung-Keun;Shin, Sang-Wuk;Lee, Se-Hyun;Rho, Jae-Yup;Lee, Jeong-Keun;Seo, Jeong-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.388-391
    • /
    • 2009
  • In this paper, We observed spectral responsivity of general poly-cristalline silicon solar cell. This is very important to define solar cell's characteristics. So we tested two small modules that made of poly-cristalline silicon solar cells. We expect to the result of this experiment is useful for researching and measuring solar cell's characteristics.

  • PDF

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

A Brief Study on the Fabrication of III-V/Si Based Tandem Solar Cells

  • Panchanan, Swagata;Dutta, Subhajit;Mallem, Kumar;Sanyal, Simpy;Park, Jinjoo;Ju, Minkyu;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Silicon (Si) solar cells are the most successful technology which are ruling the present photovoltaic (PV) market. In that essence, multijunction (MJ) solar cells provided a new path to improve the state-of-art efficiencies. There are so many hurdles to grow the MJ III-V materials on Si substrate as Si with other materials often demands similar qualities, so it is needed to realize the prospective of Si tandem solar cells. However, Si tandem solar cells with MJ III-V materials have shown the maximum efficiency of 30 %. This work reviews the development of the III-V/Si solar cells with the synopsis of various growth mechanisms i.e hetero-epitaxy, wafer bonding and mechanical stacking of III-V materials on Si substrate. Theoretical approaches to design efficient tandem cell with an analysis of state-of-art silicon solar cells, sensitivity, difficulties and their probable solutions are discussed in this work. An analytical model which yields the practical efficiency values to design the high efficiency III-V/Si solar cells is described briefly.

A Study on Validity of Anti-PID Technology of Solar Cell for the High Reliability of Photovoltaics System (태양광 발전시스템의 신뢰성 향상을 위한 태양전지의 PID 저감 기술의 타당성 검토)

  • Baik, Sungsun;Baek, Seungyup;Jung, Tae-Wook;Cho, Jin-Hyng
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • In recent years, anti-PID (Potential Induced Degradation) technologies have been studied and developed at various stages throughout the solar value chain from solar cells to systems in an effort to enhance long-term reliability of the photovoltaics (PV) system. Such technologies and applications must bring in profits economically for both manufacturers of solar cell/module and investors of PV systems, simultaneously for the development of the PV industry. In this study two selected anti-PID technologies, ES (modification of emitter structure) and ARC (modification of anti-reflective coating) were compared based on the economic features of both a cell maker with 60MW production capacity and an investor of 1MW PV power plant. As a result of this study, it is shown that ARC anti-PID technology can ensure more profits over ES technology for both the cell manufacturer and the investor of PV power plant.

An optimal design for the local back contact pattern of crystalline silicon solar cells by using PC1D simulation (PC1D Simulation을 통한 결정질 실리콘 태양전지의 국부적 후면 전극 최적화 설계)

  • Oh, Sungkeun;Lim, Chung-Hyun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • In the crystalline silicon solar cells, the full area aluminum_back surface field(BSF) is routinely achieved through the screen-printing of aluminum paste and rapid firing. It is widely used in the industrial solar cell because of the simple and cost-effective process to suppress the overall recombination at the back surface. However, it still has limitations such as the relatively higher recombination rate and the low-to-moderate reflectance. In addition, it is difficult to apply it to thinner substrate due to wafer bowing. In the recent years, the dielectric back-passivated cell with local back contacts has been developed and implemented to overcome its disadvantages. Although it is successful to gain a lower value of surface recombination velocity(SRV), the series resistance($R_{series}$) becomes even more important than the conventional solar cell. That is, it is a trade off relationship between the SRV and the $R_{series}$ as a function of the contact size, the contact spacing and the geometry of the opening. Therefore it is essential to find the best compromise between them for the high efficiency solar cell. We have investigated the optimal design for the local back contact by using PC1D simulation.

  • PDF