• Title/Summary/Keyword: SOIL PROPERTY

Search Result 736, Processing Time 0.026 seconds

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

Estimation of End Bearing Capacity of SDA Augered Piles on Various Hearing Stratums (지지지반의 종류별 SDA매입말뚝의 선단지지력 산정)

  • Hong, Won-Pyo;Chai, Soo-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.111-129
    • /
    • 2007
  • The standard construction manual of the SDA(Separated Doughnut Auger) piling method was proposed so that the resisting capacity of the augered piles could work effectively. 405 dynamic pile load tests and 30 static pile load tests were performed for 265 test piles, which were installed by the SDA piling method in 33 sites in Korea. The results of the pile load tests showed that the end bearing capacity of the SDA augered piles depended on the property of various soil stratums and did not agree with ones estimated by the existing formula based on several standard design codes. On the basis of the pile load test results, four formulas were presented according to bearing stratums to estimate quantitatively the unit end bearing capacity of the SDA augered piles. The formulas for the unit end bearing capacity of piles on soils or weathered rocks were related to N-value given by SPT(Standard Penetration Test), while the unit end bearing capacity on bedrock was suggested to be more than 1500 $tf/m^2$. The presented formulas were compared with the existing formulas, which were presented by several standard design codes to design the augered piles. In order to use correctly the presented formulas, the quality of Standard Penetration Test should be controlled precisely. Also it is desirable to choose a pilot construction site, where both dynamic and static pile load tests are performed.

Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 신뢰성평가)

  • Huh, Jung-Won;Park, Jae-Hyun;Kim, Kyung-Jun;Lee, Ju-Hyung;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.61-73
    • /
    • 2007
  • As a part of Load and Resistance Factor Design(LRFD) code development in Korea, in this paper an intensive reliability analysis was performed to evaluate reliability levels of the two static bearing capacity methods for driven steel pipe piles adopted in Korean Standards for Structure Foundations by the representative reliability methods of First Order Reliability Method(FORM) and Monte Carlo Simulation(MCS). The resistance bias factors for the two static design methods were evaluated by comparing the representative measured bearing capacities with the design values. In determination of the representative bearing capacities of driven steel pipe piles, the 58 data sets of static load tests and soil property tests were collected and analyzed. The static bearing capacity formula and the Meyerhof method using N values were applied to the calculation of the expected design bearing capacity of the piles. The two representative reliability methods(FORM, MCS) based computer programs were developed to facilitate the reliability analysis in this study. Mean Value First Order Second Moment(MVFOSM) approach that provides a simple closed-form solution and two advanced methods of FORM and MCS were used to conduct the intensive reliability analysis using the resistance bias factor statistics obtained, and the results were then compared. In addition, a parametric study was conducted to identify the sensibility and the influence of the random variables on the reliability analysis under consideration.

Effect of Mixture Ratio of Biochar and Peatmoss on the Growth of Aster spathulifolius (바이오차와 피트모스의 혼합비율이 해국 묘 생육에 미치는 영향)

  • Kim, S.J.;Kim, S.J.;Han, S.K.;Kwon, Y.K.;Kwon, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • This study was conducted to investigate the possibility of biochar as an alternative medium to peatmoss using for Aster spathulifolius. We cultivated A. spathulifolius in four potting media with different mixing rates (v/v) of peatmoss (P) and biochar (B) as follows: B0+P3, B1+P2, B2+P1, and B3+P0 with vermiculite 3 + perlite 3. Also, we analyzed the chemical properties of media and the plant growth characteristics. The results were as follows: In case of media's chemical condition, B0+P3 and B1+P2 treatments showed higher tendency (p < 0.05). Plant height on B0+P3 and B1+P2 treatments was much higher than that on other treatments (p < 0.05). Root length on B1+P2 treatment was higher than on B0+P3 treatment (p < 0.05). B0+P3 and B1+P2 treatments showed higher number of leaves and dry biomass than other treatments. Therefore, our results support that Biochar : Peatmoss : Vermiculite : Perlite (1/3 : 2/3 : 1 : 1, v/v) could be a more economical potting medium for A. spathulifolius than peatmoss : vermiculite : perlite (1 : 1 : 1, v/v).

Resistance Factors of Driven Steel Pipe Piles for LRFD Design in Korea (LRFD 설계를 위한 국내 항타강관말뚝의 저항계수 산정)

  • Park, Jae Hyun;Huh, Jungwon;Kim, Myung Mo;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.367-377
    • /
    • 2008
  • As part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 57 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and these load test piles were sorted into two cases: SPT N at pile tip less than 50, SPT N at pile tip equal to or more than 50. The static bearing capacity formula and the Meyerhof method using N values were applied to calculate the expected design bearing capacities of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods: the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, in consideration of the reliability level of the current design practice, redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure. Resistance factors of driven steel pipe piles were recommended based on the results derived from the First Order Reliability Method and the Monte Carlo Simulation method.

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Serological Approach for Selection of Bradyrhizobium japonicum Strain with Superior Symbiotic Effectiveness (Bradyrhizobium japonicum의 공생효과(共生效果) 우수균주(優秀菌株) 선발(選拔)을 위한 면역혈청학적(免疫血淸學的) 접근(接近))

  • Kang, Ui-Gum;Ha, Ho-Sung;Park, Kyeong-Bae;Lee, Sang-Kyu;Lim, Dong-Kyu;Yang, Min-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.165-172
    • /
    • 1996
  • Symbiotic effectiveness and significance of Bradyrhizobium japonicum strains in five serogroups which were consisted of three corresponding serotype strains, respectively, indigenous to Korean soils were evaluated in terms of utility of strain serogroup for symbiotic improvement on soybean plant. The nodulation by rhizobia of each serogroup on four soybean cultivars(Danweonkong, Kwangkyo, Pangsakong, and Eunhakong) was good in order of USDA 123 > YCK 150 > YCK 117 > YCK 141 > USDA 110 serogroup members. Shoot dry weight of soybean was relatively high with USDA 110 serogroup members as well as with YCK 141 serogroup members, whereas the effectiveness of USDA 123 serogroup members was the lowest among the serogroups examined. In particular, Pangsakong among soybeans inoculated with five-serogroup members was positively outstanding on nodulation and shoot dry weight of the plant. Overall, symbiotic parameters of serogroup members associated with soybean plant such as nodule number, nodule mass, $N_2$ase activity, and shoot dry weight showed significantly different responses at level of 1% probability among both rhizobial serogroups and soybean cultivars, respectively. The rate in symbiotic similarity of the members of each serogroup from F-test ($$P{\leq_-}0.05$$) was 100% for nodule No., 90% for $N_2$ase activity. and 80% for soybean shoot dry weight. Taken together, the results indicated that the serological grouping of B. japonicum could be strongly useful for improving the symbiotic effectiveness hetween soybean and Rhizobium.

  • PDF

Pollution Property of Heavy Metal in Goseong Cu Mine Area, Kyungsangnam-do, Korea (경남 고성 구리광산 지역의 중금속 오염특성)

  • Jung, Chul-Hyun;Park, Hyun-Ju;Chung, Il-Hyun;Na, Choon-Ki
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.347-360
    • /
    • 2007
  • In order to evaluate the degree and extent of heavy metal pollution and the environmental impacts of abandoned Cu mines in Goseong-gun, soils and paddies were collected from the mine area and have been analysed for heavy metal contents. The heavy metal contents were much higher in mountain soils than in paddy soils. Total content of heavy metals decreased in order of Cu>Zn>Pb>As>Cr>Cd in mountain soils whereas Zn>Pb>Cu>Cr>As>Cd in paddy soils. The extractable amount of heavy metals by 0.1/1N HCl decreased in order of Cu>Pb>Zn>As>Cd>Cr in mountain soils whereas Pb>Cu>Zn>As>Cd>Cr in paddy soils. Although the extraction ratios were highly various depending on the sampling site, their average values were in order of Cd(16%)>Pb(10%)>Cu(9%)>As(4.5%)>Zn-Cr(${\le}2.5%$). The soils investigated were enriched in heavy metals relative to the averages of earth crust as In order of $As{\ge}Cd$>Pb>Zn>Cu>Cr. Pollution index calculated from total or extractable heavy metals of soils indicated that the heavy metal pollution was restricted to mountain soils around abandoned Cu mines, especially the Samsan I mine. The metal contents of brown rice showed no significantly contaminated level as follows; As $nd{\sim}0.87mg/kg,\;Cd\;0.02{\sim}0.34mg/kg,\;Cu\;1.01{\sim}6.25mg/kg,\;Mn\;13.4{\sim}43.2mg/kg,\;Pb\;0.09{\sim}2.83mg/kg,\;and\;Zn\;16.5{\sim}79.1mg/kg$. From the extraction and dispersion properties of heavy metal with the soil pH ($4.5{\sim}7.8$), it can be deduced the conclusion that the heavy metal pollution is spreading in the study area mainly by the detrital migration of waste ore and gangue minerals rather than the dissolution and circulation of heavy metal.