• Title/Summary/Keyword: SOIL LEACHATE

Search Result 321, Processing Time 0.021 seconds

Effect of Potassium Application on Cation Uptake by Rice Plant and Leachate in Submerged Soil (답토양(畓土壤)에서 가리시용(加里施用)이 벼의 주요양(主要陽)이온 흡수(吸收)와 용탈(溶脫)에 미치는 영향(影響))

  • Jung, Kwang-Young;Cho, Seong-Jin;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.235-241
    • /
    • 1983
  • Major cation uptake by the rice plant and its leachates in submerged condition were studied at 3 different levels of potassium and nitrogen application with three texture soils (Clay loam, Loam, Sandy loam) by pot experiment. The results are as follows. 1. Potassium uptake and grain yields of rice plant were increased and calcium and magnesium uptake of rice plant were decreased by application of potassium. 2. The potassium application caused to increase Ca, Mg, K and $NH_4$ Content in leachate. 3. In the rice leaf at heading stage, the optimum cation ratios of K/Ca, K/Mg in me and $K_2O/N$ in % at N 3.3g/pot level were 1.59, 4.26 and 3.62, respectively, but the ratios were increased to 1.65, 4.32 and 3.94 at high level of nitrogen. 4. Similar trends of cation ratios were found in rice straw. leaching soil solution and soils after harvest by potassium application.

  • PDF

Treatment of residues of excavated carcasses burials (가축매몰지 소멸시 잔존물 처리방안)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2018
  • Burials for the rapid disposal of carcasses have diverse and profound effects on the rural living condition, natural environment, and local economy throughout construction, management and final destruction of burials. In this study, possible residue excavated from standard burials, storage using FRP (Fiberglass Reinforced Plastic) tanks, and microbial-treated burials are characterized as carcasses, contaminated soil by leachate, and wasted plastic film. Treatment technologies for volume reduction of the residue including composting, rendering, and thermal hydrolysis were investigated. If the solid and liquid residues generated during volume reduction treatment are directly transferred to the environmental facilities, it may cause disorder due to high concentrations of organics, antibiotics, and lipid. Benefits and drawbacks of composting as a volume reduction techniques are extensively investigated. We also discussed that proper treatment of excavated soils and the reusing the treated soil as agricultural purpose. For the protection of public health and worker's hygiene, treatment criteria including produced residue qualities, and quality standards for the treated soil as agricultural use are required. In addition, Scientific manual for the proper treatment of residues is required. It is necessary to consider the establishment of a pretreatment facility to the occurrence of large-scale residue treatment.

A Comparative Study for Leaching Characteristics of Specified By-Products due to Changes in Acid Neutralization Capacities (지정부산물의 산중화능력변화에 따른 용출특성 비교연구)

  • 이현경;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.206-209
    • /
    • 2001
  • This study presents the leaching characterization of heavy metals according to changes of pH by ANC test on slag produced in electric arc furnace, bottom ash produced in coal-fired plants and their recycling products. Availability test was performed to assess the fraction of the total concentration that under worst environmental conditions could become available for leaching. TCLP, KLT(Korea Leaching Test) and KLTS(Korea Leaching Test of Soil contamination) were carried out to compare the leaching capacity and to estimate the adequacy of regulatory leaching test. Results from regulatory leaching tests could be misleading because the variable ANC of wastes can lead to very different final leachate pHs. The final pH of the regulatory test is not the ambient pH in the disposal environment, the actual solubilities of contaminants in the field may be entirely different from those predicted by these regulatory tests. Leaching behaviour of by-products was changed by recycling processes, therefore acid neutralization capacity and availability of new products, not leaching concentration by one batch regulatory test, are necessary to determine the method of recycling.

  • PDF

Geochemical evolution of mine tailing porewaters and groundwater pollution - Case for Shiheung mine (광미 자연풍화에 따른 광미공극수의 지구화학적 진화와 지하수 오염영향 - 시흥광산의 사례)

  • 정예진;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • The Shiheung mine was closed in 1972 and has been abandoned since then. Although some restoration work has been done, there still remain mine failings in and around the mine, posing a potential environmental hazard. Mine tailings and the porewater extracted from the tailing were investigated to see any evidence of elemental release and migration to adjacent groundwater and soil in the field. The pHs of the tailing range from 6.24 to 7.23. Calcite in the studied area seems to influence on such neutral pH range. Depth profile of mine tailing demonstrate elements have been leached and removed as a consequence of weathering during disposal. This is also supported by the findings from porewater analysis, corresponding the trends in the mine tailings. The concentrations of Cu, Cd, Pb, Zn in the tailing porewater exceed the standard value of EPA for drinking water and this implies groundwater can be contaminated through infiltration of the porewaters, which ultimately will be discharged as leachate from the mine tailing. Groundwater samples collected near the mine area do not show high metal concentrations, except for Fe, which were detected over drinking water standard.

  • PDF

Change in Germination and Physiological Properties of Hippophae rhamnoides Seeds by Different Storage Period (갈매보리수나무 종자의 저장기간에 따른 발아 및 생리적 특성)

  • Choi, Chung Ho;Yang, Byeong Hoon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.4
    • /
    • pp.533-540
    • /
    • 2015
  • Germination properties, leachate electrical conductivity (EC), and inorganic compound leaching were analyzed to ascertain the storage ability and change of physiological characteristics during storage of Hippophae rhamnoides seeds. Seeds were placed in an incubator at 25℃ and sown in different soil media (sand, vermiculite and horticultural substrate) after being stored for 6, 18 and 30 months at 2℃. All germination properties decreased in accordance to an increase of the seed storage period. Compared with the seed storage for 18 months, germination percentage (GP), germination performance index (GPI), and germination value (GV) of seeds stored for 30 months decreased by more than 50%. When the seeds were sown in different soil media in a greenhouse, those germination properties were similar to the seeds germinated in an incubator, and mean germination time, GPI and GV had a significant difference except GP among soil media. EC and inorganic ion concentration had a strong positive correlation with the seed storage period, but the ratios of inorganic ions from stored seeds revealed that K+/Mg2+ and Na+/Mg2+ were inversely correlated with the storage period.

Effects of waste dumpsites on geotechnical properties of the underlying soils in wet season

  • Essienubong, Ikpe Aniekan;Okechukwu, Ebunilo Patrick;Ejuvwedia, Sadjere Godwin
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.289-297
    • /
    • 2019
  • Indiscriminate disposal of waste and citation of open dumpsites are some of the key factors affecting the various soil geotechnical properties. Atterberg limit and consolidation tests were conducted to determine the effects of two open waste dumpsites (Uselu Market and New Benin) on geotechnical properties of their underlying soils. Soil sample collected from Uselu Market dumpsite in Benin City metropolis showed slightly lower hydraulic conductivity (K) of $1.0{\times}10^{-6}$ with plasticity index of 18.53% compared to sample collected 1.6 m from the same dumpsite which had high K value of $2.42{\times}10^{-3}$ with plasticity index of 6.9%. Soil sample collected from New Benin dumpsite in Benin City metropolis showed slightly lower K of $1.45{\times}10^{-6}$ with plasticity index of 13.8% than sample collected 1.6 m from the same dumpsite which had high K value of $2.14{\times}10^{-2}$ with plasticity index of 6.0%. X-ray florescent analyser (X-MET 7000) and direct soil pH meter were used to determine the composition of the aforementioned soil samples. The result of samples collected from both dumpsites indicated a low hydraulic conductivity compared to samples collected 1.6 m from both dumpsites. Also, the chemical composition and pH of both dumpsite underlying soils indicated high level of soil contaminants with pH of 3.3 and 3.5 which is very acidic unlike pH of other samples which were in the neutral range (6.8-7.1). Hence, a liner is recommended for all dumpsites or engineered landfill systems to mitigate against the challenges associated with open waste dumping system in the environment.

Geophysical surveys for delineation of leachate flows from AMD and buried rock wastes in Kwangyang abandoned mine (광양 폐광산의 산성광산배수의 유동경로 및 폐광석 탐지를 위한 지구물리탐사)

  • 김지수;한수형;윤왕중;김대화;이경주;최상훈;이평구
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.123-131
    • /
    • 2003
  • Geophysical surveys(electrical resistivity, self-potential, seismic refraction, GPR) were conducted to investigate the physical properties of the subsurface, and to delineate the flow channel of leachate from a AMD(acid mine drainage), buried rock wastes and tailings, and drainage pipes at an abandoned mine(Kwangyang mine). Especially in rainy season the sites appear to be abundant in AMD leachate, characterized by electrical conductivities of 0.98-1.10 ms/S. Electrical resistivity sections indicate that the leachate flows running in two directions at southern part rise up through the narrow fracture zones at the central part and contaminates the surrounding soil and stream. Such schematic features at the anomalous zone are well correlated with negative peaks in self-potential data, the limited penetration depth in GPR data and low velocity zone in seismic refraction data. Shallow high-resistivity zone is associated with the buried rock wastes which cause the diffractions in GPR image. In addition, the events at depth of approximately 1-1.25 m in GPR sections must be the metal pipes through which AMD is drained off to the inner bay.

The Effect of Column Process on the Treatment of Municipal Solid Waste Leachate (Column 장치를 이용한 도시쓰레기 침출수의 처리효과)

  • Han, Mun-Gyu;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • Municipal landfill leachate, a major source of soil contamination and ground water pollution, causes serious environmental problems. To investigate the removal efficiency of pollutants in the leachate by sand, briquet ash, fly ash, and activated carbon columns, COD and some pollutants in the leachate passed through each column for 8 weeks were examined. Average COD removal efficiency for 8 weeks was 83%, 45%, and 43% by activated carbon, briquet ash and fly ash columns, respectively. COD was not effectively reduced by sand column. Average ${NH_4}\;^+$ removal efficiency for 8 weeks was more than 60% by ail columns. Hardness was effectively removed for 8 weeks by fly ash and activated carbon columns. Anoins including $PO_4\;^{3-}$, $CI^-$ and $SO_4^{2-}$ were not removed by all columns.

  • PDF

Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract (요소분해효소 기반 식물추출액을 이용한 광산폐기물 내 중금속 오염 저감)

  • Roh, Seung-Bum;Park, Min-Jeong;Chon, Chul-Min;Kim, Jae-Gon;Song, Hocheol;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • Acid mine drainage occurrence is a serious environmental problem by mining industry, it usually contains high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of the greatest concern. An indigenous plant extract was used to produce calcium carbonate from Canavalia ensiformis as effective biomaterial, and its ability to form the calcium carbonate under stable conditions was compared to that of purified urease. X-ray diffraction and scanning electron microscopy were employed to elucidate the mechanism of calcium carbonate formation from the crude plant extracts. The results revealed that urease in the plant extracts catalyzed the hydrolysis of urea in liquid state cultures and decreased heavy metal amounts in the contaminated soil. The heavy metal amounts were decreased in the leachate from the treated mine soil; 31.7% of As, 65.8% of Mn, 50.6% of Zn, 51.6% of Pb, 45.1% of Cr, and 49.7% of Cu, respectively. The procedure described herein is a simple and beneficial method of calcium carbonate biomineralization without cultivation of microorganisms or further purification of crude extracts. This study suggests that crude plant extracts of Canavalia ensiformis have the potential to be used in place of purified forms of the enzyme during remediation of heavy metal contaminated soil.

Synergistic Effects for Remediation of Salt-affected Soil using Dendranthema zawadskii var. latilobum and Soil Amendments under High-concentration Calcium Chloride (고농도 염화칼슘 농도처리에 따른 토양개량제와 구절초의 염분저감 상승효과)

  • Yoon, Yong-Han;Yang, Ji;Park, Je-Min;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.803-809
    • /
    • 2021
  • This study aimed to investigate the effects of soil amendment (heat-expanded clay and active carbon) and planting of Dendranthema zawadskii var. latilobum on the remediation of salt-affected soil and the plant growth under high calcium chloride (CaCl2) concentration. The experimental group comprised treatments including Non treatment (Cont.), heat-expanded clay (H), active carbon (AC), planting (P), heat-expanded clay+planting (H+P), active carbon+planting (AC+P). A 200 mL solution of CaCl2 at a concentration of 10 g·L-1 was applied as irrigation once every 2 weeks. Compared to the Cont., the incorporation of the 'heat-expanded clay' amendment decreased electrical conductivity of the soil leachate and cation exchange capacity, whereas the growth of Dendranthema zawadskii var. latilobum was relatively increased. These results suggest that the combination of 'heat-expanded clay' amendment and planting will mitigate negative effect of de-icing salts and improve plant growth in salt-contaminated roadside soils.