본 논문은 리튬 이온 이차 전지의 전기적 실험 및 전기화학적 모델링을 통한 배터리 수명 상태(SOH)의 추정 방법을 다룬다. 배터리 전기적 노화 실험을 통하여 실제 배터리 수명 상태를 확인하기 위하여 전류 적산법을 사용한다. 전기적 실험에서 도출한 내부저항 값을 사용하여 SOH를 추정하며, 전기화학 모델링에서 사이클 수의 증가에 따른 SEI Layer의 변화를 통해 SOH를 추정한다. 실제 배터리 수명 상태를 포함한 세 가지 방법의 SOH 추정 방법에 가중치를 적용하여 새로운 SOH를 도출하며, 이는 전류적산법을 사용하여 구한 실제 값과의 오차를 줄여주어 추정 성능을 높인다.
A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.
트램 및 전기자동차와 같은 운송 시스템에 들어가는 배터리팩은 지속적인 진동을 받게 되고 이러한 진동은 SOH(State of Health)를 감소시킨다. 뿐만 아니라 진동으로 인해 배터리팩 내부 셀들 간의 SOH가 불균일해지는 문제점이 있다. SOH의 불균형은 배터리의 수명을 단축시킨다. 본 논문에서는 각 셀 간의 SOH 균형을 위한 Thermal Balancing 기법을 제시한다.
본 논문에서는 배터리 수명의 지표인 SOH(state of health) 추정 시 배터리 노화에 따라 방전 용량의 급격한 변화가 발생하면 SOH도 변화하게 된다. 이로 인해 잘못된 SOH의 정보를 가지고 오게 되며 배터리의 안정성 및 신뢰성에 문제가 된다. 본 논문에서는 방전 용량과 내부 저항의 선형적 관계를 확인하고, 방전 용량과 내부저항을 고려한 단순선형회귀모형(simple linear regression model)을 모델링하였다. 방전 용량의 급격한 변화나 오프라인 기반 방전 용량을 측정함에 어려움이 있는 경우 단순선형회귀모형에 따라 방전 용량을 추정하여 SOH를 보정하는 기법을 제안하고 이에 대한 검증을 수행하였다.
전기자동차(EV)뿐만 아니라 ESS(Energy Storage System) 등의 사용량이 증가하면서 리튬이온배터리의 중요성은 점점 커지고 있다. 리튬 이온 배터리의 정확한 상태를 추정하는 것은 배터리의 안전하고 신뢰성 있는 작동을 위해 매우 중요하다. 본 논문에서는 AEKF(Adaptive Extended Kalman Filter)를 이용한 배터리 파라미터와 충전상태(SOC, State of Charge)를 추정하고, 이를 활용하여 배터리의 건강상태(SOH, State of Health)를 추정하는 간단한 알고리즘을 제시한다. AEKF에 파라미터 값을 적용하여 SOC를 추정하고, 추정된 SOC값과 전류 적산을 이용하여 SOH를 추정한다. SOC 오차에 따른 SOH 추정 값의 편차는 SOC 연산 간격을 늘리고 가중치 필터를 적용하여 최소화시킴으로써 결과의 정확성을 향상했다. 다양한 자동차의 표준 주행 패턴을 적용한 실험을 통해 제안된 방법을 이용하여 얻어진 SOH 추정 결과는 RMSE(Root Mean Square Error) 1.428% 이내임을 검증하였다.
리튬 이온 배터리가 소형 모바일 기기, 전기 자동차, 에너지 저장장치 등에 상용화됨에 따라서 이의 충전 상태(SOC) 추정 및 셀, 모듈의 건전성(SOH)의 예측이 배터리 사용 기기의 관리 지표로 사용되고 있다. 리튬 이온 배터리는 여러 차례의 방전으로 노화되어 기기의 요구 부하를 공급가능한지 지표로 평가되어야 한다. 정확한 SOH 추정을 위해 리튬 이온 배터리의 방전 용량 실험이 주기적으로 진행되어야 하며, 이를 통해 오프라인 기반의 SOH 추정이 가능해진다. 본 논문에서는 베이지안 회귀분석 방법을 이용하여 오프라인 SOH 추정을 진행하기 위해 방전 용량을 추정하였으며, 고출력 배터리인 18650 25R셀을 이용하여 방전 용량 추정 결과 방전 전류 1 C-rate에서 1%, 2 C-rate에서 2%의 추정 오차율을 나타냈다.
전세계적으로 온실가스 및 미세먼지 저감을 위한 탄소중립 정책에 따라 전기차보급이 확대될 전망이다. 전기자동창의 운용은 열악한 환경에서 사용되고 충전과 방전 등을 거듭할수록 에너지밀도가 낮아지고 내부분리막의 손상등의 이유로 건전성이 떨어짐에 따라 차량의 주행거리가 줄고, 충전 속도가 느려지는 이유로 대략 5~10년 정도 사용한 배터리들은 폐배터리로 분류하며 이 같은 이유로 배터리 화재 및 폭발 등의 위험성이 높아 지게 됩에 따라 배터리의 진단 및 SOH의 추정이 필수적이라 할 수 있다. 배터리 SOH추정은 매우 중요한 요소로 현재는 배터리 충방전을 반복하면서 소요되는 시간, 온도, 전압을 측정하여 배터리의 상태를 평가하는데 정확도가 낮다. 불안정한 폐배터리를 다수의 반복적 충전과 방전을 통해 진단하는 과정에서 화재 및 폭발의 취약점을 보완하여 신뢰성이 높은 폐배터리의 상태데이터를 취득할 수 있는 기반을 마련하고 본 논문에서는 리튬이온 배터리의 SOH예측을 위해 테슬라 폐배터리를 이용한 방전 용량 측정을 바탕으로 획득한 데이터를 서포트 벡터 머신 기반으로 예측하고자 하였다.
현대사회에서 축전지라 불리우는 2차 전지는 그 용도가 중요하지만, 비선형적이고 다양한 파라메타에 따른 복잡한 특성 때문에 그 사용법에 있어서 발전에 제한을 받아왔다. 각 축전지 셀의 건강상태(SOH)를 실시간으로 정확히 파악하는 것은 장비의 안정된 운전과 원활한 관리를 위하여 필수적이다. 본 논문에서는 축전지의 내부컨덕턴스를 측정하는 간접적인 방법에 의하여 장비의 운전이나 축전지의 수명에 영향을 주지 않고 납축전지의 건강상태(SOH)를 실시간으로 진단하는 방법을 제시하고, 실제로 120개의 납축전지에 대한 컨덕턴스 자료에 의하여 건강상태를 진단하고 교체시기를 판단한다.
배터리의 효율적인 관리와 안정적인 운영을 위해서는 배터리의 노화에 따른 배터리의 모니터링이 필요하다. 하지만 모델 기반의 SOH 예측 모델의 경우 파라미터의 변화에 대한 정확한 정보가 반영되지 않을 경우 심각한 오류를 야기 할 수 있다. 따라서 본 논문에서는 비 모델인 시계열 예측 기법 ARIMA 모델을 제안하고 전기적 특성 실험을 통한 내부 파라미터에 대한 분석과 파라미터에 대한 상관분석, 이를 통한 SOH 예측을 통해 ARIMA 모델의 특성 및 정확성에 대해 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.