• Title/Summary/Keyword: SNS data

Search Result 926, Processing Time 0.026 seconds

Design and implementation of trend analysis system through deep learning transfer learning (딥러닝 전이학습을 이용한 경량 트렌드 분석 시스템 설계 및 구현)

  • Shin, Jongho;An, Suvin;Park, Taeyoung;Bang, Seungcheol;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.87-89
    • /
    • 2022
  • Recently, as more consumers spend more time at home due to COVID-19, the time spent on digital consumption such as SNS and OTT, which can be easily used non-face-to-face, naturally increased. Since 2019, when COVID-19 occurred, digital consumption has doubled from 44% to 82%, and it is important to quickly and accurately grasp and apply trends by analyzing consumers' emotions due to the rapidly changing digital characteristics. However, there are limitations in actually implementing services using emotional analysis in small systems rather than large-scale systems, and there are not many cases where they are actually serviced. However, if even a small system can easily analyze consumer trends, it will help the rapidly changing modern society. In this paper, we propose a lightweight trend analysis system that builds a learning network through Transfer Learning (Fine Tuning) of the BERT Model and interlocks Crawler for real-time data collection.

  • PDF

The effect of social network sports community consciousness on sports attitude

  • Eunjung Tak;Jungyeol Lim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.223-232
    • /
    • 2023
  • The purpose of this study is to determine the impact of social network sports community consciousness on loyalty and sports attitude. In order to achieve this research purpose, the population of the study was selected as adult men and women over the age of 20 who are active in the social network sports community in 2022. The sampling method used cluster random sampling to select a total of 300 people, 150 men and 150 women, as research subjects. The survey tool used was the questionnaire method, and the questionnaire whose reliability and validity had been verified in previous studies at home and abroad was used by requoting, modifying, or supplementing it to suit the purpose of this study. It was also structured on a 5-point scale. Frequency analysis, factor analysis, reliability analysis, simple regression analysis, and multiple regression analysis were performed on the collected data using the statistical program SPSS Windows 20.0 Version. The results obtained through this process are as follows. First, social network sports community consciousness was found to have a partial effect on loyalty. Second, social network sports community consciousness was found to have a partial effect on sports attitudes. Third, social network sports community loyalty was found to have a partial effect on sports attitudes. Considering these results, various activities such as decision-making process, relationship formation, and opinion expression of modern people are carried out by the O-line community. In addition, while in the past it was a format that led from offline activities to online activities, currently, there are more and more formats that lead from online activities to offline activities. Therefore, modern people's SNS sports community activities provide many experiences, which creates a sense of community and sports attitudes are formed based on this. This can be said to lead to loyal activities.

The Impact of Environmental Concern, Environmental Knowledge, and Consumer Value on Purchase Intention and Behavior of Up-cycled Products (환경관심, 환경지식, 소비가치가 업사이클 제품의 구매의도 및 구매행동에 미치는 영향)

  • Chan Ho Jeon;Sang Hyeok Park;Seung Hee Oh
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.123-138
    • /
    • 2024
  • With the increase in online shopping and delivery food consumption since the pandemic, solving environmental problems caused by single-use packaging has become an important issue. 'Upcycling' is a combination of 'Upgrade' and 'Recycle', and it is the rebirth of obsolete or discarded objects by adding new value to them, and there are currently various upcycled products on the market. In order to activate upcycling, consumers' awareness of the environment and their values for consumption are very important. This study aims to investigate the influence of students' environmental concern, environmental experience, and consumption value on their purchase intention of upcycled products. Based on the results of previous studies on environmental concern, environmental experience, and consumption value, hypotheses were set, and a survey was conducted among university students nationwide to test the hypotheses. The results of this study are as follows First, environmental concern has a significant positive effect on purchase intention of upcycled products. It can be seen that the more environmental concerns such as global warming and waste disposal problems increase, the more positive attitudes toward upcycled products increase. Second, the research hypothesis that environmental knowledge will have a positive effect on the purchase intention of upcycled products is rejected. It was found that environmental knowledge is acquired through environmental education and many SNS, but it does not have a direct effect on the purchase intention of upcycled products. Third, it was found that the consumption value of college students has a positive effect on the purchase intention of upcycled products by increasing their positive perception of upcycled products. Fourth, college students' purchase intention of upcycled products has a positive effect on their behavioral intention to purchase upcycled products. The results of the study provide implications for relevant organizations such as universities and companies to effectively design upcycling-related education. It is also expected to have a positive impact on the use of upcycled products by providing basic information on the characteristics of consumers who purchase upcycled products.

Corporate use of Social Media and Corporate Social Performance: Evidence from Korea (기업의 SNS 활용과 사회적 책임 성과: 기업 연령의 조절 효과를 중심으로)

  • Jee-Hyun Park;Do-Kyun Kwon;Yang-Min Kim
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.2
    • /
    • pp.53-70
    • /
    • 2024
  • Purpose - The purpose of this paper is to examine whether firms use social media to disseminate good news to various stakeholders thereby enhancing corporate social performance (CSP). Design/methodology/approach - This study collected data from various databases such as Korea Economic Justice Institute (KEJI) Index, VALUESearch, and TS2000, and such social media platforms as Instagram and Meta (formerly known as facebook). The sample of this study includes 3,474(firm-year) observations from 799 unique Korean firms between 2013-2022. This study conducts fixed effect panel regression analysis to test the hypotheses. Findings - First, we found both corporate use of social media, and the number of uploaded corporate news on social media were positively related to CSP. We also found that positive user reactions to the news on social media were positively related to CSP. Second, we examine the moderating roles of firm age in the relationships described above. The results show that firm age strengthens both the relationship between number of uploaded news on social media and CSP, and the relationship between positive user reactions to news on social media and CSP. Research implications or Originality - This study extends the social media research in the management literature by investigating how corporate use of social media, number of uploaded corporate news on social media, and the user reactions on the news on social media affect corporate social performance. For a practical implication, our results allow the stakeholders to better predict corporate future CSP. They suggest that ceteris paribus, firms that use social media actively, vis-a-vis firms that do not use social media actively, are more likely to get good CSP scores. They also suggest that such beneficial effects of social media will become more prominent as companies get older.

A Design of Satisfaction Analysis System For Content Using Opinion Mining of Online Review Data (온라인 리뷰 데이터의 오피니언마이닝을 통한 콘텐츠 만족도 분석 시스템 설계)

  • Kim, MoonJi;Song, EunJeong;Kim, YoonHee
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • Following the recent advancement in the use of social networks, a vast amount of different online reviews is created. These variable online reviews which provide feedback data of contents' are being used as sources of valuable information to both contents' users and providers. With the increasing importance of online reviews, studies on opinion mining which analyzes online reviews to extract opinions or evaluations, attitudes and emotions of the writer have been on the increase. However, previous sentiment analysis techniques of opinion-mining focus only on the classification of reviews into positive or negative classes but does not include detailed information analysis of the user's satisfaction or sentiment grounds. Also, previous designs of the sentiment analysis technique only applied to one content domain that is, either product or movie, and could not be applied to other contents from a different domain. This paper suggests a sentiment analysis technique that can analyze detailed satisfaction of online reviews and extract detailed information of the satisfaction level. The proposed technique can analyze not only one domain of contents but also a variety of contents that are not from the same domain. In addition, we design a system based on Hadoop to process vast amounts of data quickly and efficiently. Through our proposed system, both users and contents' providers will be able to receive feedback information more clearly and in detail. Consequently, potential users who will use the content can make effective decisions and contents' providers can quickly apply the users' responses when developing marketing strategy as opposed to the old methods of using surveys. Moreover, the system is expected to be used practically in various fields that require user comments.

The Study of Developing Korean SentiWordNet for Big Data Analytics : Focusing on Anger Emotion (빅데이터 분석을 위한 한국어 SentiWordNet 개발 방안 연구 : 분노 감정을 중심으로)

  • Choi, Sukjae;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.1-19
    • /
    • 2014
  • Efforts to identify user's recognition which exists in the big data are being conducted actively. They try to measure scores of people's view about products, movies and social issues by analyzing statements raised on Internet bulletin boards or SNS. So this study deals with the problem of determining how to find the emotional vocabulary and the degree of these values. The survey methods are using the results of previous studies for the basic emotional vocabulary and degree, and inferring from the dictionary's glosses for the extended emotional vocabulary. The results were found to have the 4 emotional words lists (vocabularies) as basic emotional list, extended 1 stratum 1 level list from basic vocabulary's glosses, extended 2 stratum 1 level list from glosses of non-emotional words, and extended 2 stratum 2 level list from glosses' glosses. And we obtained the emotional degrees by applying the weight of the sentences and the emphasis multiplier values on the basis of basic emotional list. Experimental results have been identified as AND and OR sentence having a weight of average degree of included words. And MULTIPLY sentence having 1.2 to 1.5 weight depending on the type of adverb. It is also assumed that NOT sentence having a certain degree by reducing and reversing the original word's emotional degree. It is also considered that emphasis multiplier values have 2 for 1 stratum and 3 for 2 stratum.

Personalized Clothing and Food Recommendation System Based on Emotions and Weather (감정과 날씨에 따른 개인 맞춤형 옷 및 음식 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.447-454
    • /
    • 2022
  • In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman's theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.

A Generation and Matching Method of Normal-Transient Dictionary for Realtime Topic Detection (실시간 이슈 탐지를 위한 일반-급상승 단어사전 생성 및 매칭 기법)

  • Choi, Bongjun;Lee, Hanjoo;Yong, Wooseok;Lee, Wonsuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.7-18
    • /
    • 2017
  • Recently, the number of SNS user has rapidly increased due to smart device industry development and also the amount of generated data is exponentially increasing. In the twitter, Text data generated by user is a key issue to research because it involves events, accidents, reputations of products, and brand images. Twitter has become a channel for users to receive and exchange information. An important characteristic of Twitter is its realtime. Earthquakes, floods and suicides event among the various events should be analyzed rapidly for immediately applying to events. It is necessary to collect tweets related to the event in order to analyze the events. But it is difficult to find all tweets related to the event using normal keywords. In order to solve such a mentioned above, this paper proposes A Generation and Matching Method of Normal-Transient Dictionary for realtime topic detection. Normal dictionaries consist of general keywords(event: suicide-death-loop, death, die, hang oneself, etc) related to events. Whereas transient dictionaries consist of transient keywords(event: suicide-names and information of celebrities, information of social issues) related to events. Experimental results show that matching method using two dictionary finds more tweets related to the event than a simple keyword search.

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.