인터넷 기술이 발전함에 따라 SNS 사용자가 늘어나고 있다. SNS의 대중화가 진행되면서 소셜 네트워크의 영향력과 익명성을 활용한 SNS형 범죄가 나날이 증가하고 있는 추세이다. 본 논문에서는 인스타그램에서 SNS형 범죄에 주로 이용되는 가짜 계정 분류를 위해 통계 데이터와 이미지 데이터를 이용하여 각각 기계학습 및 딥러닝(deep learning) 기법을 활용한 가짜 계정 분류 방법을 제안한다. 모델 학습에 사용된 SNS 계정 데이터는 자체적으로 수집하였으며, 수집된 데이터는 통계 데이터 및 이미지 데이터에 기반한다. 통계 데이터의 경우에는 기계학습 및 다층 퍼셉트론 기반으로 학습을 진행하였고, 이미지 데이터의 경우에는 합성곱 신경망(Convolutional Neural Network, CNN) 기반으로 학습을 진행하였다. 학습을 진행한 결과 계정 분류에 대하여 정확도가 전반적으로 높게 나온 것을 확인하였다.
인간관계 유지와 새로운 관계 형성을 지원하는 다양한 소셜 네트워크가 각광을 받으면서 사용자간 친밀도 분석에 대한 연구가 활발히 진행되고 있다. SNS에서 구성되는 사용자 개인 정보와 컨텐츠 공유 및 기타 활동에 대한 정보는 사용자의 특징을 파악할 수 있는 유용한 정보가 된다. 이러한 정보는 추천과 같은 여러 가지 서비스에서 사용될 수 있으며, 특히 사용자간 친밀도 분석을 통한 친구 추천에서 유용하게 사용된다. 기존 친밀도 분석 연구에서는 사용자간 프로필 유사도와 메시지 교환수 같은 양적 정보를 사용해 왔다. 본 논문에서는 사용자간 대화 내용을 분석한 내용적 정보를 친밀도 분석에 반영하기 위한 방법을 제안한다. 학습 데이터를 활용하여 구축된 친밀도 분별 시스템에서는 감탄사, 종결어미, 선어말어미, 이모티콘, 문장 길이의 내용적 자질 정보의 사용으로 기존 양적 정보 사용과 유사한 수준의 친밀도 분별 성능을 얻을 수 있었으며, 양적 정보와 내용적 정보를 동시 사용한 경우 소폭의 성능 향상을 얻었다.
스마트 모바일 기기의 보편화로 개인 위치 정보에 기반한 다양한 서비스가 가능해졌다. 또한 모바일 기기를 이용한 소셜 미디어 이용자수가 대폭 증가함에 따라 위치에 기반한 다양한 소셜 미디어 서비스에 대한 수요가 증대되고 있다. 이 논문에서는 위치에 기반한 소셜 미디어 데이터베이스에 표준 API를 사용한 접근과 결과의 분석으로 사용자가 필요로 하는 정보를 생성하고 실시간 모바일 서비스를 하기 위한 기술적 기법들에 대하여 소개하고 연구 결과를 보인다.
본 연구는 SNS 문서의 논쟁 유발성을 자동으로 감지하기 위한 연구이다. 논쟁 유발성 분류는 글의 주제와 문체, 뉘앙스 등 추상화된 자질로서 인지되기 때문에 단순히 n-gram을 보는 기존의 어휘적 자질을 이용한 문서 분류 기법으로 해결하기가 어렵다. 본 연구에서는 문서 전체에서 전역적으로 나타난 추상화된 자질을 학습하기 위해 2-phase CNN 기반 논쟁 유발성 판별모델을 제안한다. SNS에서 수집한 글을 바탕으로 실험을 진행한 결과, 제안하는 모델은 기존의 문서 분류에서 가장 많이 사용된 SVM에 비해 월등한 성능 향상을, 단순한 CNN에 비해 상당한 성능 향상을 보였다.
최근 빅데이터 시대에 다가와서 소셜 네트워크 서비스(Social Network Service)가 중요한 정보 공유의 수단으로 발전함에 따라 그에 따른 예측분석, 동향분석, 이슈탐지 등이 증가하고 있으며, 콘텐츠 분야에서 빅데이터 기법 사례가 증가하는 추세이다. 모바일기기 보급이 빠르게 확산되면서 SNS 활성화와 함께 많은 양의 데이터가 증가하고 있으며, 인스타그램과 같은 해시태그 사용 가능 SNS 서비스에서 해시태그의 동시출현은 해시태그만의 연관성이 있음을 의미한다. 본 논문에서는 대상 SNS의 동시출현 해시태그를 분석하기 위해 발생되는 데이터를 가지고 현재 트렌드에 맞게 분석하여 정보를 제공하는 방법을 제시한다.
본 연구는 SNS 문서의 논쟁 유발성을 자동으로 감지하기 위한 연구이다. 논쟁 유발성 분류는 글의 주제와 문체, 뉘앙스 등 추상화된 자질로서 인지되기 때문에 단순히 n-gram을 보는 기존의 어휘적 자질을 이용한 문서 분류 기법으로 해결하기가 어렵다. 본 연구에서는 문서 전체에서 전역적으로 나타난 추상화된 자질을 학습하기 위해 2-phase CNN 기반 논쟁 유발성 판별 모델을 제안한다. SNS에서 수집한 글을 바탕으로 실험을 진행한 결과, 제안하는 모델은 기존의 문서 분류에서 가장 많이 사용된 SVM에 비해 월등한 성능 향상을, 단순한 CNN에 비해 상당한 성능 향상을 보였다.
데이터가 폭발적으로 증가함에 따라 필요한 정보들을 찾는 것은 더욱더 어려워지고 개인의 생각이나 많은 자료들을 SNS 공간을 통해 공유함으로써 프라이버시 유출도 많아지게 된다. 대부분의 SNS는 자신의 공간에 게재된 정보에 대한 접근권한 만을 설정할 수 있고 자신이 타인의 공간에 게재한 게시물에 대해서는 접근 권한 설정에 대한 자격을 부여하지 않는다. 이를 통해 원치 않은 사용자들에게 까지 자신의 개인 정보가 노출되는데 얼마든지 개인 정보의 유출로 인한 문제들이 일어날 수 있다. 따라서 본 논문에서는 서비스 제공자가 제 3자에게 SNS 그래프 데이터 제공시 개인 정보의 노출을 차단하기 위해 K-Means Clustering 기법을 사용한 방법을 보인다.
정보기술의 발달과 인터넷의 확산 등의 사회적인 변화에 따라 고객을 효과적으로 만족시킬 수 있도록 기업은 고객과의 장기적인 관계를 구축하는 고객관계관리(CRM: Customer Relationship Management)을 사용하고 있다. 최근에는 블로그나 SNS등에 기업이 상품이나 서비스를 팔고자 하는 소비자들이 가득 모여 있기 때문에 실시간으로 소비자의 니즈를 파악할 수 있는 방법으로 트위터, 블로그, 카페 등 SNS 상의 빅 데이터를 분석하는 시스템을 이용한다. 본 논문에서는 고객의 보다 효율적인 피드백 수집분석을 위해 기존의 기업/기관에서 운영 및 관리하는 내부 CRM 데이터와 SNS 상의 외부 데이터를 연동하여 분석할 수 있는 이기종 데이터의 통합 분석엔진 시스템을 제안한다. 이를 의료서비스에 적용하여 내부 데이터인 매출, 방문자 수, 진료과 정보, 환자 정보, 고객 불만 유형 등을 분석하고 소셜데이터를 통해 해당 의료기관에 대한 소비자 경험 (진료, 시설 등) 정보를 수집한다.
SNS(Social Networking Service)의 활용률이 높은 현대 사회에서 광범위하게 사용되고 있는 SNS 마케팅은 도서관계에서는 범위 및 확산되는 속도가 다른 영역에 비해 느리다. 이를 분석하기 위한 국내의 연구들이 있었지만 SNS 마케팅이 활성화되어 있는 해외의 사례에 비해 적은 국내의 자료로 인해 난항을 겪고 있음에 주목하였다. 특히 국내외 대학도서관의 SNS 마케팅 현황을 관찰하고 이를 확산 이론과 연결하는 것을 통해 다시 한번 현재 상황을 분석하였다.
최근 모바일 환경의 발전으로 시간적, 공간적 제약이 없어짐으로서, SNS에서 실시간으로 서로간의 의사소통과 정보의 공유가 가능하게 되었다. 이로 인해 SNS는 빠르게 대중화가 이루어졌고 오늘날엔 SNS의 영역이 사회 전반으로 확대되면서 경제적, 사회적 가치를 지니게 되었다. 기업들은 SNS를 통해 마케팅 전략을 세우거나 소셜커머스로 사용자들과 전자상거래를 하게 되었고, 개인들은 다른 사용자와 특정 이슈에 대해 견해를 교류하거나 정보를 공유하여 오프라인의 영역에도 영향을 미치게 되었다. SNS의 빠른 대중화와 더불어 SNS를 통한 이득을 보기 위해 사용자들은 개인정보를 SNS와 기업에게 제공하고 있다. 하지만 이러한 개인정보가 무분별하게 제공됨에 따라 사용자의 의지와 상관없이 불법적으로 사용되는 사례가 빈번하게 발생하고 있고, 이로 인해 정보 프라이버시의 침해 우려는 사용자들이 SNS를 지속적으로 사용하는 데에 있어서 큰 방해 요인 중 하나가 되었다. 실제로 이를 시스템적으로 최대한 보호해주는 폐쇄형 SNS가 최근 등장함에 따라 많은 사용자들이 폐쇄형 SNS에 몰리고 있다. 따라서 본 연구에서는 프라이버시 계산 모형(Privacy Calculus Model)을 기반으로 하여 SNS를 사용함에 따라 사용자가 인지하는 이득을 시스템적인 보안과 개인의 심리적 프라이버시를 보장하는 것으로 제시하여 사용자가 인지된 이득을 위해 SNS를 지속적으로 사용하려는 의도가 정보 프라이버시 염려에 의해 어떤 영향을 받는지 알아보았다. 또한, 지속적인 사용 의도에 대표적인 요인들로 알려진 신뢰, 만족, 혜택이 정보 프라이버시 염려를 조절하는 역할을 할 수 있는 지 살펴보는 연구 모형을 제안하였다. 결과적으로 밴드의 경우에 보안과 프라이버시 염려 간에는 영향을 미치지 않았지만, 심리적 프라이버시의 경우엔 영향을 미쳤고, 신뢰 역시 지속적인 사용의도에 영향을 미쳤지만 사용자의 만족은 여전히 정보 프라이버시 염려를 완화시키지 않는 것으로 나타났다. 또한 심리적인 프라이버시가 지속적 사용의도에 영향을 미친다는 점으로 보아, 기업들은 SNS를 설계할 때 사회적 책임을 가지고 개인의 심리적인 프라이버시를 보장하는 것을 고려해야 한다는 것을 알 수 있었다. 본 연구는 폐쇄형 SNS를 서비스하는 기업들에게 SNS의 어떤 면을 강조해서 서비스해야 하는 지그 방향성을 제시해주고 정보 프라이버시 염려가 사용자가 인지하는 이득에 어떤 영향을 미치는 지, 또 이것을 어떤 요인으로 조절할 수 있는 지를 밝혔다는 데에서 학문적 의의를 찾아볼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.