• Title/Summary/Keyword: SNR(Signal to noise ratio)

Search Result 1,135, Processing Time 0.031 seconds

An Exact BER Analysis of Dual-Hop MIMO Decouple-and-Forward Relaying with Orthogonal Space-Time Block Codes (직교 시공간 블록 부호를 적용한 듀얼 홉 MIMO Decouple-and-Forward 릴레이에 대한 정확한 비트 에러율 분석)

  • Lee, Jae-Hoon;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1147-1155
    • /
    • 2008
  • In this paper, we derive the probability density function (PDF) of end-to-end signal-to-noise ratio (SNR) for t he dual-hop MIMO (Multiple-Input Multiple-Output) DCF (Decouple-and-Forward) system. We also provide the end-to-end bit error ratio (BER) with M-ary PSK constellations for four antenna combinations. These are (1,8,1), (8,1,8), (2,4,2), and (4,2,4). Each number in the parentheses is the number of the transmit antenna at the source, the transmit and receive antenna at the relay and the receive antenna at the destination, respectively. We show t hat the end-to-end BER expression with M-ary PSK constellations makes an exact match with numerical results. We also show that MIMO DCF relay system achieves spatial diversity.

Dose and Image Evaluation according to Changes in Tube Voltage during Chest X-ray Examination according to Automatic Exposure Control (자동노출제어장치 유·무에 따른 흉부 후·전방향 검사 시 관전압 변화에 따른 선량 및 영상평가)

  • Young-Cheol, Joo;Dong-Hee, Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.871-877
    • /
    • 2022
  • This study was conducted to improve the problems of exposure dose and image reading applied to patients due to the incorrect use of AEC during chest radiography. Images were acquired by dividing the case where AEC was used as the test condition and the case where AEC was not used. As a result of the study, the dose was reduced by 1.17% in 110 kVp without AEC than with AEC, 17.2% decrease at 100 kVp, 30.19% decrease at 90 kVp, and 46.45% decrease at 80 kVp. There was a significant difference in the statistical values according to the tube voltage change in the lung, trachea, and heart SNR average values with AEC and without AEC 110 kVp, but the difference in image quality was insignificant in actual images. When AEC was not applied at the same tube voltage, the dose could be reduced by 17.2% while maintaining the image quality similar to that of with AEC at 100 kVp without AEC. Therefore, rather than relying on AE conditions during chest radiographic examination, it is considered that the conditions should be considered for the examination while lowering the dose by selecting an appropriate tube voltage.

Gadolinium Complexes of Bifunctional Diethylenetriaminepentaacetic Acid (DTPA)-bis(amides) as Copper Responsive Smart Magnetic Resonance Imaging Contrast Agents (MRI CAs)

  • Nam, Ki Soo;Park, Ji-Ae;Jung, Ki-Hye;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2900-2904
    • /
    • 2013
  • We present the synthesis and characterization of DTPA-bis(histidylamide) (1a), DTPA-bis(aspartamide) (1b), and their gadolinium complexes of the type $[Gd(L)(H_2O)]$ (2a:L = 1a; 2b:L = 1b). Thermodynamic stabilities and $R_1$ relaxivities of 2a-b compare well with Omniscan$^{(R)}$, a well-known commercial, extracellular (ECF) MRI CA which adopts the DTPA-bis(amide) framework for the chelate: $R_1$ = 5.5 and 5.1 $mM^{-1}$ for 2a and 2b, respectively. Addition of the Cu(II) ion to a solution containing 2b triggers relaxivity enhancement to raise $R_1$ as high as 15.3 $mM^{-1}$, which corresponds to a 300% enhancement. Such an increase levels off at the concentration beyond two equiv. of Cu(II), suggesting the formation of a trimetallic ($Gd/Cu_2$) complex in situ. Such a relaxivity increase is almost negligible with Zn(II) and other endogenous ions such as Na(I), K(I), Mg(II), and Ca(II). In vivo MR images and the signal-to-noise ratio (SNR) obtained with an aqueous mixture of 2b and Cu(II) ion in an 1:2 ratio demonstrate the potentiality of 2 as a copper responsive MRI CA.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

Design and Performance Analysis of Current Source for 3.0T MREIT System (3.0T MREIT 시스템을 위한 정전류원의 설계 및 성능검증)

  • 김규식;오동인;백상민;오석훈;우응제;이수열;이정한
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2004
  • In Magnetic Resonance Electrical Impedance Tomography (MREIT), we inject current through electrodes placed on the surface of a subject and measure the induced magnetic flux density distribution using an MRI scanner. This requires a constant current source whose output pulses are synchronized with MR pulse sequences. In this paper, we present a design and performance analysis of a current source used in a 3.0T MREIT system. The developed current source was tested using a saline phantom. We found that its performance is satisfactory for the current MREIT system. We suggest future improvements for better SNR(signal-to-noise ratio).

Performance Analysis of the Packet DS/SS Receiver using the BSP Methods (패킷 대역 확산 블록 수신기의 성능 분석)

  • 양대웅;강민구;박성경;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 1994
  • This paper investigates the performance analysis of the packet DS/SS receiver with a PJED(phase-jump error detector) using the block signal processing(BSP) methods. The conventional packet DS/SS block receiver has a high probability of mistaking the phase-jump detection, which causes the frequency estimation error. The conventional receiver uses a Matched-Pulse Timing Extractor which has a complicated structure. The proposed packet DS/SS block receiver with the PJED which uses libearity of the phase has little probability of mistaking the phase-jump detection. The proposed Matched Pulse Timing Extractor gas the more simple structure but obtains the same performance on the exact matched-pluse timing as the conventional one does. The simulation results show that the proposed receiver gives about 2dB improvement in the BER compared with the conventional receiver.

  • PDF

A Study on the Design of Functional Clothing for Vital sign Monitoring -Based on ECG Sensing Clothing- (생체신호 측정을 위한 기능성 의류의 디자인 연구 -심전도 센싱 의류를 중심으로-)

  • Cho, Ha-Kyung;Song, Ha-Young;Cho, Hyeon-Seong;Goo, Su-Min;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.467-474
    • /
    • 2010
  • Recently, Study of functional clothing for Vital sensing is focused on reducing artifact by human motions, in order to enhance the electrocardiogram(ECG) sensing accuracy. In this study, considering the factors for each element found from the analysis, a 3-lead electrode inside textile embroidered with silver yarn was developed, and draft designs off our types of vital-signal sensing garments, which are 'chest-belt typed' garment, 'cross-typed' garment 'x-typed' garment and 'curved x-typed' garment, were prepared. The draft designs were implemented on a sleeveless male shirt made of an elastic material so that the garment and the electrodes can remain closely attached along the contour of the human body, and the acquired data was sent to the main computer over a wireless network. In order to evaluate the effects caused by body movements and the ECG-sensing capability for each type in static and dynamic states, displacements were measured from one and two dimensional perspectives. ECG measurement evaluation was also performed for Signal-to-noise ratio(SNR) analysis. Applying the experimental results, the draft garment designs were modified and complemented to produce two types of modular approaches 'continuous-attached' and 'insertion-detached' for the ECG-sensing smart clothing.

  • PDF

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Fabrication of a Schottky Type Ultraviolet Photodetector Using GaN Layer (GaN를 이용한 Schottky diode형 자외선 수광소자의 제작)

  • Seong, Ik-Joong;Lee, Suk-Hun;Lee, Chae-Hyang;Lee, Yong-Hyun;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.28-34
    • /
    • 1999
  • We fabricated a planar ultra-violet photodetector whose ohmic and schottky contacts were respectively formed with evaporated Al and Pt on the GaN layer. To examine the applicability of the device to the UV sensor, we investigated its electrical and optical characteristics. The GaN layer on the sapphire waver had $7.8{\times}10^{16}cm^{-3}$ of doping concentnation and the $138 cm^2/V{\cdot}s$ of electron mobility and it absorbed the spectrum of the light below 325 nm wavelength. It had the responsivity of 2.8 A/W of at 325 nm, and the signal to noise ratio(SNR) of $4{\times}10^4$, and the noise equivalent power(NEP) of $3.5{\times}10^9$W under 5 V reverse bias. These results confirmed that the GaN schottky diode had a solar blind properly when it was applied to the UV photodetector.

  • PDF

A Study on X-ray Radiography for the Diagnosis of Screw Insertion Operation of Odontoid Fracture Patients in Cervical (목뼈 치아돌기 골절 환자의 나사못 삽입수술 진단을 위한 X-Ray 촬영법 연구)

  • Byung-Ju-Ahn;In-Soo Kim;Jong-Nam Song;Jae-Bok Han
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.309-315
    • /
    • 2024
  • The Study In order to obtain a Clear Image of fractures in Atlas and Axis of Cervical Spin, this Study obtained Images examined using a Cervical Spin Pantom and a Radiation device, and then Commissioned five Radiologists and three Orthopedic Regent Doctors for Subjective Psychological ROC (Receiver, Operation, Characteristic) Evaluation. As aRresult, the X-ray Tube was Tilted 15° toward the leg to Receive a high score of 29 Points during the Eamination, and the Objective Evaluation Signal-to-noise Ratio (SNR) was 6.032 points, which was high. In Addition, by Tilting the X-ray tube 10° toward the head, it received a high score of 33 points during the Examination, and a high score of 7.840 Points in the objective evaluation. And as a result of Subjectively and Objectively Statistically Evaluating the Examined Images, the Cronbach Alpha value was Calculated as 0.791. Since the Cronbach Alpha value was 0.7 or higher, the Reliability could be Evaluated as 'very good', and the significance probability (p) was Statistically Significant at 0.042 points.