• Title/Summary/Keyword: SNP marker

Search Result 278, Processing Time 0.032 seconds

Genome Wide Association Study to Identity QTL for Growth Taits in Hanwoo (전장 유전체 연관분석을 통한 한우 성장 연관 양적형질좌위 (QTL) 탐색)

  • Lee, Seung Hwan;Lim, Dajeong;Jang, Gul Won;Cho, Yong Min;Choi, Bong Hwan;Kim, Si Dong;Oh, Sung Jong;Lee, Jun Heon;Yoon, Duhak;Park, Eung Woo;Lee, Hak Kyo;Hong, Seong Koo;Yang, Boh Suk
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.323-329
    • /
    • 2012
  • Genome-wide association study was performed on data from 266 Hanwoo steers derived from 66 sires using bovine 10K mapping chip in Hanwoo (Korean cattle). SNPs were excluded from the analysis if they failed in over 5% of the genotypes, had median GC scores below 0.6, had GC scores under 0.6 in less than 90% of the samples, deviated in heterozygosity more than 3 standard deviations from the other SNPs and were out of Hardy-Weinberg equilibrium for a cut-off p-value of $1^{-15}$. Unmapped and SNPs on sex chromosomes were also excluded. A total of 4,522 SNPs were included in the analysis. To test an association between SNP and QTL, a single marker regression analysis was implemented in this study. SNP was assumed to be in LD with QTL in close proximity and the effect evaluated was additive effect (QTL allele substitution effect). The number of significant SNP at a threshold of P<0.001 was 3, 5, 5 and 4 loci for live weight at 6, 12, 18 and 24 months, respectively. For live weight at different ages, significant SNP were spread out across chromosome but some of significant SNP (rs29012453 and rs29012456 on BTA24) had shown highly significant effects. As for the distribution of size of SNP effects, few loci for live weight at different age had moderate effects (6~11%) but most of significant loci had small effects (2 to 5% of additive genetic variance) against total additive genetic variance. In conclusion, live weight at different age might be affected by few loci with moderate effect and many loci with small effects across genome in Hanwoo.

Analysis of Carcass Characteristics in the 3rd Intron of Pig POU1F1 Gene (돼지의 POU1F1 Intron 3영역 유전자에 따른 도체특성 분석)

  • Kim, Gye-Woong;Yoo, Jae-Young
    • Journal of Animal Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.283-288
    • /
    • 2009
  • This study was carried out to compare Msp I polymorphisms in the 3rd intron of porcine gene encoding the pituitary-1 transcription factor (POU1F1) from 286 pigs (Landrace $\times$ Yorkshire $\times$ Duroc, LYD) and to determine the associations between its genotypes and carcass traits by using the PCR-RFLP technique. The frequency of the single nucleotide polymorphism (SNP) genotype DD (84.33%) was very higher than that of CC genotype (0.75%). Allelic frequencies for C and D were 0.082 and 0.918, respectively. Each population followed the Hardy-Weinberg equilibrium. Meat colours of Hunter $L^*$ values and visual colour according to two genotypes were all significantly different. However, no significant difference in crossbred (LYD) was found between CD and DD genotypes for other traits. Therefore, this suggests that POU1F1 may be a major gene or marker for carcass traits.

Development of SNP markers for the identification of apple flesh color based on RNA-Seq data (RNA-Seq data를 이용한 사과 과육색 판별 SNP 분자표지 개발)

  • Kim, Se Hee;Park, Seo Jun;Cho, Kang Hee;Lee, Han Chan;Lee, Jung Woo;Choi, In Myung
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.372-378
    • /
    • 2017
  • For comparison of the transcription profiles in apple (Malus domestica L.) cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red flesh apple cultivar, 'Redfield' and white flesh apple cultivar, 'Granny Smith' were investigated by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the red flesh apple cultivar and white flesh apple cultivar were selected for nucleotide sequence determination and homology searches. High resolution melting (HRM) technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between red flesh apple cultivars and white flesh apple cultivars. We applied high resolution melting (HRM) analysis to discover single nucleotide polymorphisms (SNP) based on the predicted SNP information derived from the apple EST database. All 103 pairs of SNPs were discriminated, and the HRM profiles of amplicons were established. Putative SNPs were screened from the apple EST contigs by HRM analysis displayed specific difference between 10 red flesh apple cultivars and 11 white flesh apple cultivars. In this study, we report an efficient method to develop SNP markers from an EST database with HRM analysis in apple. These SNP markers could be useful for apple marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in apple cultivars.

Polymorphism, Expression of Natural Resistance-associated Macrophage Protein 1 Encoding Gene (NRAMP1) and Its Association with Immune Traits in Pigs

  • Ding, Xiaoling;Zhang, Xiaodong;Yang, Yong;Ding, Yueyun;Xue, Weiwei;Meng, Yun;Zhu, Weihua;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1189-1195
    • /
    • 2014
  • Natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) plays an important role in immune response against intracellular pathogens. To evaluate the effects of NRAMP1 gene on immune capacity in pigs, tissue expression of NRAMP1 mRNA was observed by real time quantitative polymerase chain reaction (PCR), and the results revealed NRAMP1 expressed widely in nine tissues. One single nucleotide polymorphism (SNP) (ENSSSCG00000025058: g.130 C>T) in exon1 and one SNP (ENSSSCG00000025058: g.657 A>G) in intron1 region of porcine NRAMP1 gene were demonstrated by DNA sequencing and PCR-RFLP analysis. A further analysis of SNP genotypes associated with immune traits including contain of white blood cell (WBC), granulocyte, lymphocyte, monocyte (MO), rate of cytotoxin in monocyte (MC) and $CD4^-CD8^+$ T lymphocyte subpopulations in blood was carried out in four pig populations including Large White and three Chinese indigenous breeds (Wannan Black, Huai pig and Wei pig). The results showed that the SNP (ENSSSCG00000025058: g.130 C>T) was significantly associated with level of WBC % (p = 0.031), MO% (p = 0.024), MC% (p = 0.013) and $CD4^-CD8^+$ T lymphocyte (p = 0.023). The other SNP (ENSSSCG00000025058: g.657 A>G) was significantly associated with the level of MO% (p = 0.012), MC% (p = 0.019) and $CD4^-CD8^+$ T lymphocyte (p = 0.037). These results indicate that the NRAMP1 gene can be regarded as a molecular marker for genetic selection of disease susceptibility in pig breeding.

A SNP Harvester Analysis to Better Detect SNPs of CCDC158 Gene That Are Associated with Carcass Quality Traits in Hanwoo

  • Lee, Jea-Young;Lee, Jong-Hyeong;Yeo, Jung-Sou;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.766-771
    • /
    • 2013
  • The purpose of this study was to investigate interaction effects of genes using a Harvester method. A sample of Korean cattle, Hanwoo (n = 476) was chosen from the National Livestock Research Institute of Korea that were sired by 50 Korean proven bulls. The steers were born between the spring of 1998 and the autumn of 2002 and reared under a progeny-testing program at the Daekwanryeong and Namwon branches of NLRI. The steers were slaughtered at approximately 24 months of age and carcass quality traits were measured. A SNP Harvester method was applied with a support vector machine (SVM) to detect significant SNPs in the CCDC158 gene and interaction effects between the SNPs that were associated with average daily gains, cold carcass weight, longissimus dorsi muscle area, and marbling scores. The statistical significance of the major SNP combinations was evaluated with $x^2$-statistics. The genotype combinations of three SNPs, g.34425+102 A>T(AA), g.4102636T>G(GT), and g.11614-19G>T(GG) had a greater effect than the rest of SNP combinations, e.g. 0.82 vs. 0.75 kg, 343 vs. 314 kg, 80.4 vs $74.7cm^2$, and 7.35 vs. 5.01, for the four respective traits (p<0.001). Also, the estimates were greater compared with single SNPs analyzed (the greatest estimates were 0.76 kg, 320 kg, $75.5cm^2$, and 5.31, respectively). This result suggests that the SNP Harvester method is a good option when multiple SNPs and interaction effects are tested. The significant SNPs could be applied to improve meat quality of Hanwoo via marker-assisted selection.

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population

  • Laodim, Thawee;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.508-518
    • /
    • 2019
  • Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

Development of molecular marker for species authentication of Dendranthema indicum (L.) Des Moul. and D. boreale (Makino) Ling ex Kitam. (감국(Dendranthema indicum (L.) Des Moul.) 및 산국(D. boreale (Makino) Ling ex Kitam.)의 종판별 분자마커 개발)

  • Byeon, Jihui
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.66-66
    • /
    • 2018
  • 국화과(Compositae) 다년생 초본인 산국속(Dendranthema)은 국내 약 13여종이 자생하는 것으로 알려져 있으며, 이 중 감국(D. indicum (L.) Des Moul.)과 산국(D. boreale (Makino) Ling ex Kitam.), 구절초(D. zawadskii var. latilobum (Maxim.) Kitam.)가 주로 차 또는 한약재 등의 원료로 이용되고 있다. 차로 이용되는 꽃은 산국이 감국에 비해 상대적으로 작아서 구분이 가능하지만 시중에는 건조된 형태로 가공 유통되므로 육안으로 구분이 쉽지 않고, 산국 유래 제품들은 국내에서 감국 또는 국화로 혼용해서 표기되어 유통되고 있어 그 기원을 명확히 정립할 필요가 있다. 이에 본 연구는 감국과 산국의 분자유전학적 판별을 위해 DNA 바코드 후보 유전자를 활용하여 염기서열분석으로 확보된 SNP 및 InDel 정보를 바탕으로 CAPS 마커를 개발하고자 수행되었다. 감국과 산국 모두 trnL-trnF intergenic spacer 구간에서 약 1kb의 PCR 산물이 확인되었고, 이들 염기서열에서 분석한 2 SNP 및 3 InDel을 대상으로 CAPS 마커 개발을 위한 제한효소 사이트를 탐색하였다. Gap을 포함한 774bp (감국/산국=A/G) 위치의 SNP에서 BstUI(GC^GC)처리로 CAPS 마커로 전환 가능함이 확인되었고, 이에 감국과 산국의 PCR 산물에 제한효소를 처리한 결과, 제한효소 인식 사이트가 존재하는 산국에서 두 개의 DNA 단편이 확인되었다. 위 결과는 다양한 형태로 가공 유통되는 감국과 산국의 판별을 위한 마커로 활용될 수 있으며, 본 연구에 활용된 기술은 추후 건강기능식품 개발을 위한 원료표준화 확립 연구에 유용할 것으로 판단된다.

  • PDF

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E.;Iqbal, A.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1406-1410
    • /
    • 2014
  • Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Development of HRM Markers for Discrimination of Pyogo (Lentinula edodes) Cultivars Sanjo 701 and Chamaram

  • Suyun Moon;Hojin Ryu
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.225-233
    • /
    • 2022
  • Pyogo (Shiitake, Lentinula edodes) is one of the most important edible mushrooms because of its outstanding nutritive and medicinal value. In the registration and protection procedure for newly developed mushroom cultivars, the application of molecular markers that can supplement the morphological characteristic-based distinction has been strongly requested. Sanjo 701 and Chamaram, newly developed at the Federation Forest Mushroom Research Center of Korea, have been characterized as innovative cultivars suitable for customer demands because of their high yields and cultivation rates. However, no technical tools can protect the rights to these important cultivars. In this study, using comparative genomic information from 23 commercially available pyogo cultivars, we identified single nucleotide polymorphisms (SNPs) that accurately differentiated Sanjo701 and Chamaram from the other cultivars. We also developed high-resolution melting analysis (HRM)-based SNP markers that discriminate among the tested 23 pyogo cultivars. The developed SNP markers can be utilized for rapid, accurate identification of pyogo cultivars with low genetic diversity and to prevent cultivar contamination caused by illegally distributed inocula. In addition, these markers can serve as a crucial scientific basis for securing the right to conserve new cultivars in international markets.