• Title/Summary/Keyword: SMS spam

Search Result 24, Processing Time 0.02 seconds

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

A Method for Spam SMS Filtering Using Bayesian Network and Multi Layer Perceptron (베이지안 네트워크와 멀티 레이어 퍼셉트론을 이용한 모바일 스팸 문자 메시지 필터링 방법)

  • Hong, Seung-Beom;Kim, Moon-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.283-286
    • /
    • 2011
  • 스팸 메시지는 불특정 다수에게 보내지는 광고성 메시지로서 최근 들어 그 양이 증가하고 있는 추세이다. 본 논문에서는 모바일 환경에서의 스팸 메시지 필터링을 위한 시스템을 제안하며 기존 환경에서 자주 사용되었던 키워드 기반 필터링 시스템의 단점을 해결하고자 고안되었다. 베이지안 네트워크를 통해 스팸 메시지들의 패턴을 추출하고 추출된 패턴을 멀티 레이어 퍼셉트론을 이용해 학습하여 메시지들을 분류한다. 이 시스템을 통해 약 93.5%의 필터링 정확도률을 얻었으며 키워드 선택 대신 스팸 메시지를 선택해 학습시킴으로서 사용하기 쉽고 사용자에 맞는 시스템을 구성할 수 있었다.

A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning (딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법)

  • Ka-Hyeon Kim;Heonchang Yu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.