• Title/Summary/Keyword: SMD assembly

Search Result 19, Processing Time 0.025 seconds

Feeder Re-assign Problem in a Surface Mount Device with a Piano-Type Multi-Headed Gantry

  • Tae, Hyunchul;Kim, Byung-In
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • A surface mount device (SMD) assembles electronic components on printed circuit boards (PCB). Since a component assembly process is a bottleneck process in a PCB assembly line, making an efficient SMD plan is critical in increasing the PCB assembly line productivity. Feeder assignment is an important part of the SMD plan optimization. In this paper, we propose a feeder re-assign improvement algorithm for a specific type of SMD machine with a piano type multi-head gantry. Computational results on some real-world benchmark data sets show the effectiveness of our proposed algorithm.

Automatic Classification of SMD Packages using Neural Network (신경회로망을 이용한 SMD 패키지의 자동 분류)

  • Youn, SeungGeun;Lee, Youn Ae;Park, Tae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.276-282
    • /
    • 2015
  • This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.

SMD Detection and Classification Using YOLO Network Based on Robust Data Preprocessing and Augmentation Techniques

  • NDAYISHIMIYE, Fabrice;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • The process of inspecting SMDs on the PCB boards improves the product quality, performance and reduces frequent issues in this field. However, undesirable scenarios such as assembly failure and device breakdown can occur sometime during the assembly process and result in costly losses and time-consuming. The detection of these components with a model based on deep learning may be effective to reduce some errors during the inspection in the manufacturing process. In this paper, YOLO models were used due to their high speed and good accuracy in classification and target detection. A SMD detection and classification method using YOLO networks based on robust data preprocessing and augmentation techniques to deal with various types of variation such as illumination and geometric changes is proposed. For 9 different components of data provided from a PCB manufacturer company, the experiment results show that YOLOv4 is better with fast detection and classification than YOLOv3.

Wavelet Transform Based Image Template Matching for Automatic Component Inspection (자동부품검사를 위한 웨이블렛 변환 기반 영상정합)

  • Cho, Han-Jin;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.225-230
    • /
    • 2009
  • We propose a template matching method for component inspection of SMD assembly system. To discriminate wrong assembled components, the input image of component is matched with its standard image by template matching algorithm. For a fast inspection system, the calculation time of matching algorithm should be reduced. Since the standard images of all components located in a PCB are stored in computer, it is desirable to reduce the memory size of standard image. We apply the discrete wavelet transformation to reduce the image size as well as the calculation time. Only 7% memory of the BMP image is used to discriminate goodness or badness of components assembly. Comparative results are presented to verify the usefulness of the proposed method.

An Efficient PCB Assembly Method by Multiple Adsorption with Gantry Type SMD using Simulation (갠트리 타입 SMD에서 동시 흡착에 의한 효율적 PCB 조립 방안의 시뮬레이션 연구)

  • Moon, Gee-Ju;Kim, Gwang-Pil
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • An efficient PCB assembly method with Gantry type machine is developed and proposed in this paper to improve system productivity. Nozzle changes at Gantry type machine is the major reason causing lower system performance instead of header and slot movements on the other type machines. The problem is attacked by maximizing multiple adsorptions to reduce the number of necessary nozzle changes with Gantry type machine. It is designed to reduce the assembly time per PCB with multiple adsorptions based upon the positions of feeders and nozzles. A simulation model is constructed to show the effectiveness of the suggested heuristic and necessarily a comparison study is followed with different methods on selection of next assembly feeder and nozzle with various cases.

  • PDF

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

Generation of Robotic Assembly Aequences with Consideration of Line Balancing Using a Simulated Annealing (조립라인의 밸런싱을 고려한 자동 조립 순서 추론)

  • Hong, Dae-Seon;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.112-118
    • /
    • 1995
  • In designing assembly lines, it is required that the lines should not only meet the demand of the product, but also minimize the assembly cost associated with the line. For such a purpose, numerous research efforts have been made on either the assembly sequence generation or the assembly line balancing. However, the works dealing with both the research problems have been seldom reported in literature. When assembly sequences are generated without consideration of line balancing, additional cost may be incurred, because the sequences may not guarantee the minimum number of workstations. Therefore, it is essential to consider line balancing in the generation of cost-effective assembly sequences. To incorporate the two research problems into one, this paper treats a single-model and deterministic (SMD) assembly line balancing (ALB) problem, and proposes a new method for generating line-balanced robotic assembly sequences by using a simulated annealing. In this method, an energy function is derived in consideration of the satisfaction of assembly constraints, and the minimization of both the assembly cost and the idle time. Then, the energy function is iteratively minimized and occasionally perturbed by the simulated annealing. When no further change in energy occurs, an assembly sequence with consideration of line balancing is finally found. To show the effectiveness of the proposed scheme, a case study for an electrical relay is presented.

  • PDF

The Accurate Measurement of Center Position and Orientation of SMD Mounted VR on PCB used geometric characteristics by Computer Vision in Real Time (SMD VR 형상특징을 적극적으로 이용한 VR의 위치 및 홈각도 계측)

  • 김병엽;송재용;장경영;한창수;박종현;감도영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.504-509
    • /
    • 1994
  • Recently SMT is used widely to place the SMD on bare board which is very small and highly integrated. And that is one of the issue directly in the electric products assembly process and especiallly in the field of optimizing electric product's performance, automatically tuning method which is highly demanded in the electronics industry. To tune product's performance, variable resistances's resistivity should be changed until it has good performance characteristics. In this paper to automatically regulate the 8mm camcoder's performance, it is proposed variable resistence's center position and orientation detection algorithm by image processing, which has very precise and accurate result. And we found optimal conditions which can have effects on image acquisition process. And real time processing is done by DSP to detect vr's center and orientation. This results make it possible to utilize proposed image processing algorithm and system directly in electronics industry.

  • PDF

A Dynamic Modeling & State Sensitivity Analysis of the Surface Mounting Device (Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석)

  • Jang, Jinhee;Han, Changsoo;Kim, Jungduck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.90-99
    • /
    • 1996
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformed which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backlash and friction. Therefore a dynamic modeling and state sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensit- ivity analysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensit- ivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design and faster operating based on the results of dynamic and state sensitivity.

  • PDF

A real-time vision system for SMT automation

  • Hwang, Shin-Hwan;Kim, Dong-Sik;Yun, Il-Dong;Choi, Jin-Woo;Lee, Sang-Uk;Choi, Jong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.923-928
    • /
    • 1990
  • This paper describes the design and implementation of a real-time, high-precision vision system and its application to SMT(surface mounting technology) automation. The vision system employs a 32 bit MC68030 as a main processor, and consists of image acquisition unit. DSP56001 DSP based vision processor, and several algorithmically dedicated hardware modules. The image acquisition unit provides 512*480*8 bit image for high-precision vision tasks. The DSP vision processor and hardware modules, such as histogram extractor and feature extractor, are designed for a real-time excution of vision algorithms. Especially, the implementation of multi-processing architecture based on DSP vision processors allows us to employ more sophisticated and flexible vision algorithms for real-time operation. The developed vision system is combined with an Adept Robot system to form a complete SMD system. It has been found that the vision guided SMD assembly system is able to provide a satisfactory performance for SND automation.

  • PDF