• Title/Summary/Keyword: SMD Sauter

Search Result 194, Processing Time 0.028 seconds

The Characteristics of a Transient Liquefied Butane Spray using PDPA and High Speed Camera (PDPA와 고속카메라에 의한 액상부탄 간헐분무 특성 연구)

  • 윤준규;임종한;김종현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.466-474
    • /
    • 2004
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a flash boiling spray is expected when the surround pressure is below the saturated vapor pressure of the butane(0.23MPa 98K). The axial velocities. radial velocities. and size distributions in butane sprays were measured with PDPA(Phase Doppler Particle Analyzer) system. Sprays were macroscopically observed by using the high speed camera in case that the surround pressure is 0.37MPa and 0.15MPa. respectively. Compared with the conventional spray. the reversed results were investigated when the surround pressure is below the saturated vapor pressure of the butane.

Effects of Backhole on Hyraulics of Liquid Rocket Swirl Coaxial Injector (액체로켓 동축형 스월인젝터에서 Backhole에 의한 수력학적 영향)

  • Hwang Seong-Ha;Seol Jaehoon;Jeong Wonho;Han Poongkyu;Yoon Youngbin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.287-290
    • /
    • 2002
  • 'Backhole' is an extra empty volume where is located behind the tangential entries at the rear par of the vortex chamber in the swirl coaxial injector. With the backhole, there are three major hydraulic characteristics. First, mass flow rate is increased about $15{\%}$ compared with the case without the backhole. Second, with the backhole, the center region of the injected flow has more large volume than that of without the backhole. The last, some range of the cone angle can be controlled by the backhole Experiments are conducted by using a PDPA apparatus, a mechanical patternator, stroboscopic photography and etc. With the backhole, based on cold-flow tests, the model swirl injector has some Improvement in its performance.

  • PDF

The Spray Characteristics of Simplex Atomizer under Various Shroud Air Conditions with Swirl Flow (쉬라우드 공기의 선회 유동 특성 변화에 따른 심플렉스 연료 노즐의 분무 특성)

  • Lee, D.H.;Lee, K.Y.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.35-41
    • /
    • 2004
  • The spray characteristics were investigated to study the effect of shroud air with swirl flow on simplex type fuel injector for gas turbine combustor. The spray tests using PDA(Phase Doppler Anemometry) technique were conducted to compare the performance of simplex atomizer with $0^{\circ},\;40^{\circ},\;50^{\circ}$ swirled-shroud air conditions. In this study. we found that the injector with strong swirled-shroud air has the better atomization Performance compared with weaker swirled and non-swirled conditions.

  • PDF

Mixing Characteristics of Static Mixers for Emulsion Oil (이멀션유 정적믹서의 혼합특성 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.91-98
    • /
    • 2000
  • The fuels of water-in-oil emulsion have a potential of reducing PM(Particulate Matter) and NOx emissions, and increassing combustion efficiency in the furnaces and the burners. For making the most of the beneficial of the secondary atomization due to the microexplosion, the water droplets distributed in the oil must have the optimal sizes. The purpose of this paper is to investigate the water droplet size distribution characteristics of the different types of the static mixers. For analysing the size distribution characteristics efficiently, image analysis system was constructed and an appropriate image processing algorithm was developed. Two kinds of static mixers: Kenics type and RF type, were tested. As a results, RF type static mixer shows a better characteristics in the mean drop sizes, particularly in the condition of high water content.

  • PDF

Gasoline Spray Characteristics Impinging onto the Wall Surface in Suction Air Flow

  • Kim, Woo-Tae;Kang, Shin-Jae;Park, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1376-1385
    • /
    • 2000
  • This study investigates spray characteristics before and after wall impingingment of gasoline spray in suction air flow. For this study, a rectangular model intake port was made of acrylic glass, and suction air was generated by using the forced air blower contrariwise. The injector for this study was a pintle-type port gasoline injector in which an air-assist adaptor is installed to supply assisted air. A PDPA system was employed to simultaneously measure the size and velocity of droplets near the wall. Measured droplets are divided into "pre-impinging droplets"with positive normal velocity and "post-impinging droplets"were negative normal velocity for the suction flow. The velocities, size distributions and Sauter mean diameter(SMD) of pre-and post-impinging droplets for varions injection angles and air-assists are comparatively analyzed.

  • PDF

Atomization Characteristics of Effervescent Atomizer with the Variations of Operating Conditions (작동조건 변화에 따른 기체주입미립화기의 미립화 특성)

  • Kim, Hyung-Gon;Yano, Toshiaki;Song, Kyu-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.869-874
    • /
    • 2003
  • The atomization characteristics were investigated through the influence of the change of GLR and the change of working fluid on droplet size distribution and mean diameter of drop produced by effervescent atomizer. For simultaneous injection of water and high viscous waste vegetable oil, effervescent atomizer with two aerator tubes was specially designed. From the experimental results, regardless of mass fraction of vegetable oil in working fluids, it is expected that effervescent atomizer will exhibit excellent atomization performance at the high GLR conditions.

  • PDF

Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature (연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구)

  • Lee, Dong-Jo;Kim, Ho-Yong;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF

A Study on the Mixture Formation in a Fuel Injection System (연료분사장치의 혼합기 형성에 관한 연구)

  • ;;;Lee, K. H.;Seo, Y. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2690-2698
    • /
    • 1995
  • Fuel atomization and mixture formation in an gasoline engine has influence on the engine performance and pollutant emission. The throttle valve installed in an intake system plays a greater role in control of mixture quantity in accordance with engine drive condition. In this study, the characteristics of secondary atomization developed at the downstream of the valves were observed using an image processing method. Two major kinds of valves, solid and perforated ones, are chosen in order to compare the valve performance with the experimental parameters of air flow rate, valve opening angle, and valve shapes. For the perforated valve, we can obtain the relatively small sized droplets, and nearly uniformed and dense distributed sprays with low loss coefficient than for the solid valve.

Wall Impingement Behavior and Droplet Size Measurement in Diesel Spray (디젤분무의 벽면충돌거동 및 분무입경측정)

  • 이장희;김태권;최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.39-49
    • /
    • 1994
  • An experimental investigation was undertaken in a diesel spray to evaluate wall impingement behavior and droplet size distribution. Emphasis is placed on the possibility of the application for new combustion type which is based on OSKA-D type. Visualization were employed using optical scheme which was a spark shadowgraphy to observe the behavior of wall impingement caused by diesel spray vertically injected at the center of the combustion chamber. Droplet size measurements using Malvern system were made to quantify the visual observations with surface diameter of impingement. The effects of the surface dia. variation on the droplet size during injection with the wall impingement spray are discussed. It was found that for the wall impingement spray the droplet size becomes greatly small rather than the spray without the wall impingement and the droplet deposition rate of the injection fuel is decreased as the surface area of impingement becomes small.

  • PDF

A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique (LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구)

  • Kim, Y.R.;Kim, M.S.;Cho, H.;Min, K.D.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF