• Title/Summary/Keyword: SMAS

Search Result 72, Processing Time 0.017 seconds

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.

Simulation platform for living environment to ensure quality life (쾌적한 생활 설계를 위한 주거 및 사무실 시뮬레이터개발)

  • Park, Se-Jin;Kim, Chul-Jung;Kim, Si-Kyung;Mazumder, Mohammad Mynuddin Gani
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.853-860
    • /
    • 2007
  • In this modern era, human beings lead their life in complex environment where there are lots of parameters such as temperature, light, smell, sound, visual stimulus etc. that play important role for quality life. These parameters affect physical and mental behavior of a human being immensely. To ensure quality life the demand for quality products is always associated with human emotion and sensibility. Due to human sensibility and emotion involvement with quality life, the design stages of any kind of product must include some certain features related with emotion and sensibility. The cues for optimizing artificial environment are the physiological responses of human in that environment. The conventional approach of environmental physiology is to measure the relationship between environmental physical parameters and human psychological parameters under artificial conditions. Using that approach we tried to design an artificial environment for our daily lives and activities associated with both physiological and psychological behavior. We developed the technique to present the mock environment and software to measure and evaluate sensibility physiologically or psychologically and a simulator to measure and evaluate sensibility that can be utilized for large scale industrial production and design of environment. Simulator to measure and analyze human sensibility (SMAS) was constructed, which was utilized to estimate human sensibility and to simulate living and office environment.

  • PDF