• Title/Summary/Keyword: SMART-1 array

Search Result 73, Processing Time 0.02 seconds

Pipeline defect detection with depth identification using PZT array and time-reversal method

  • Yang Xu;Mingzhang Luo;Guofeng Du
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.253-266
    • /
    • 2023
  • The time-reversal method is employed to improve the ability of pipeline defect detection, and a new approach of identifying the pipeline defect depth is proposed in this research. When the L(0,2) mode ultrasonic guided wave excited through a lead zirconate titinate (PZT) transduce array propagates along the pipeline with a defect, it will interact with the defect and be partially converted to flexural F(n, m) modes and longitudinal L(0,1) mode. Using a receiving PZT array attached axisymmetrically around the pipeline, the L(0,2) reflection signal as well as the mode conversion signals at the defect are obtained. An appropriate rectangle window is used to intercept the L(0,2) reflection signal and the mode conversion signals from the obtained direct detection signals. The intercepted signals are time reversed and re-excited in the pipeline again, result in the guided wave energy focusing on the pipeline defect, the L(0,2) reflection and the L(0,1) mode conversion signals being enhanced to a higher level, especially for the small defect in the early crack stage. Besides the L(0,2) reflection signal, the L(0,1) mode conversion signal also contains useful pipeline defect information. It is possible to identify the pipeline defect depth by monitoring the variation trend of L(0,2) and L(0,1) reflection coefficients. The finite element method (FEM) simulation and experiment results are given in the paper, the enhancement of pipeline defect reflection signals by time-reversal method is obvious, and the way to identify pipeline defect depth is demonstrated to be effective.

A Study on the Optimization of Power Consumption Pattern using Building Smart Microgrid Test-Bed (Building Smart Microgrid Test-Bed를 이용한 전력사용량 패턴 최적화방안 연구)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The microgrid system is the combination of photovoltaic(PV) array, load, and battery energy storage system. The control strategies were defined as multi-modes of operation, including rest operation without use of battery, power charging, and power discharging, which enables grid connected mode or islanded mode. Photovoltaic power is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to variation of insolation and duration of sunshine. As a solution to the above problem, energy storage system(ESS) is considered generally. There fore, in this study, we did basic research activities about optimization method of the amount of energy used, using a smart microgrid test-bed constructed in building. First, we analyzed the daily, monthly and period energy pattern amount of power energy used, and analyzed PV power generation level which is built on the roof. Utilizing building energy pattern analysis data, we was studied an efficient method of employing the ESS about building power consumption pattern and PV generation.

A Temperature-Controllable Microelectrode and Its Application to Protein Immobilization

  • Lee, Dae-Sik;Choi, Hyoung-Gil;Chung, Kwang-Hyo;Lee, Bun-Yeoul;Pyo, Hyeon-Bong;Yoon, Hyun-C.
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.667-669
    • /
    • 2007
  • This letter presents a smart integrated microfluidic device which can be applied to actively immobilize proteins on demand. The active component in the device is a temperature-controllable microelectrode array with a smart polymer film, poly(N-isopropylacrylamide) (PNIPAAm) which can be thermally switched between hydrophilic and hydrophobic states. It is integrated into a micro hot diaphragm having an integrated micro heater and temperature sensors on a 2-micrometer-thick silicon oxide/silicon nitride/silicon oxide (O/N/O) template. Only 36 mW is required to heat the large template area of 2 mm${\times}$16 mm to $40^{\circ}C$ within 1 second. To relay the stimulus-response activity to the microelectrode surface, the interface is modified with a smart polymer. For a model biomolecular affinity test, an anti-6-(2, 4-dinitrophenyl) aminohexanoic acid (DNP) antibody protein immobilization on the microelectrodes is demonstrated by fluorescence patterns.

  • PDF

Analysis of W-CDMA System with Smart Antenna for Different Bandwidths in Wideband Multipath Channel (광대역 다중경로 채널에서 스마트 안테나를 적용한 W-CDMA 시스템의 대역폭에 따른 성능분석)

  • 전준수;이주석 ;김철성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.2
    • /
    • pp.47-55
    • /
    • 2003
  • In this paper, the performance of DS-CDMA system with smart antenna is analyzed for different bandwidths (1.25MHz,5MHz) and different channel environments (rural, urban) in wideband multipath channel. For the analysis of smart antenna system, the vector channel having the spatio-temporal correlation is modeled as a time-variant linear filter in time, and each multipath is assumed as a reflective wave from only one direction (only one cluster) in space. Several multipath is within one chip are distingushed into each one and the strongest signal is selected, DS-CDMA system with smart antenna using wider bandwidth present better performance than that using narrow bandwidth. It is shown that the smart antenna is more effective in urban area when using 2D-RAKE receiver.

Performance Analysis of a Smart Antenna Test-bed Operating in a IS2000 Environment (IS2000 환경에서 스마트 안테나 Test-bed의 성능분석)

  • 임흥재;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1061-1070
    • /
    • 2002
  • In this paper, we present a performance analysis of the smart antenna test-bed operating in a IS2000 1x through a test-bed that has been implemented on a DSP(TMS320C6711) board. The test-bed consists of a PC (for generating the RX data), beam-former(i.e., a stand-alone PCB for weight computation), and an interfacing module. The performance improvements compared to a normal base station system consisting of a single antenna are shown in terms the BER(bit error rate) in the wide-band CDMA channel.

A practical coherency model for spatially varying ground motions

  • Yang, Qing-Shan;Chen, Ying-Jun
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.141-152
    • /
    • 2000
  • Based on the discussion about some empirical coherency models resulted from earthquake-induced ground motion recordings at the SMART-1 array in Taiwan, and a heuristic model of the coherency function from elementary notions of stationary random process theory and a few simplifying assumptions regarding the propagation of seismic waves, a practical coherency model for spatially varying ground motions, which can be applied in aseismic analysis and design, is proposed, and the regressive coefficients are obtained using least-square fitting technique from the above recordings.

Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring

  • Grosse, Christian U.;Glaser, Steven D.;Kruger, Markus
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.197-209
    • /
    • 2010
  • The structural state of a bridge is currently examined by visual inspection or by wired sensor techniques, which are relatively expensive, vulnerable to inclement conditions, and time consuming to undertake. In contrast, wireless sensor networks are easy to deploy and flexible in application so that the network can adjust to the individual structure. Different sensing techniques have been used with such networks, but the acoustic emission technique has rarely been utilized. With the use of acoustic emission (AE) techniques it is possible to detect internal structural damage, from cracks propagating during the routine use of a structure, e.g. breakage of prestressing wires. To date, AE data analysis techniques are not appropriate for the requirements of a wireless network due to the very exact time synchronization needed between multiple sensors, and power consumption issues. To unleash the power of the acoustic emission technique on large, extended structures, recording and local analysis techniques need better algorithms to handle and reduce the immense amount of data generated. Preliminary results from utilizing a new concept called Acoustic Emission Array Processing to locally reduce data to information are presented. Results show that the azimuthal location of a seismic source can be successfully identified, using an array of six to eight poor-quality AE sensors arranged in a circular array approximately 200 mm in diameter. AE beamforming only requires very fine time synchronization of the sensors within a single array, relative timing between sensors of $1{\mu}s$ can easily be performed by a single Mote servicing the array. The method concentrates the essence of six to eight extended waveforms into a single value to be sent through the wireless network, resulting in power savings by avoiding extended radio transmission.

Real-Time Tracking of Human Location and Motion using Cameras in a Ubiquitous Smart Home

  • Shin, Dong-Kyoo;Shin, Dong-Il;Nguyen, Quoc Cuong;Park, Se-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.84-95
    • /
    • 2009
  • The ubiquitous smart home is the home of the future, which exploits context information from both the human and the home environment, providing an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. In this paper, we present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. The system uses four network cameras for real-time human tracking. This paper explains the architecture of the real-time human tracker, and proposes an algorithm for predicting human location and motion. To detect human location, three kinds of images are used: $IMAGE_1$ - empty room image, $IMAGE_2$ - image of furniture and home appliances, $IMAGE_3$ - image of $IMAGE_2$ and the human. The real-time human tracker decides which specific furniture or home appliance the human is associated with, via analysis of three images, and predicts human motion using a support vector machine (SVM). The performance experiment of the human's location, which uses three images, lasted an average of 0.037 seconds. The SVM feature of human motion recognition is decided from the pixel number by the array line of the moving object. We evaluated each motion 1,000 times. The average accuracy of all types of motion was 86.5%.

Chemiresistive Sensor Array Based on Semiconducting Metal Oxides for Environmental Monitoring

  • Moon, Hi Gyu;Han, Soo Deok;Kang, Min-Gyu;Jung, Woo-Suk;Jang, Ho Won;Yoo, Kwang Soo;Park, Hyung-Ho;Kang, Chong Yun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.15-18
    • /
    • 2014
  • We present gas sensing performance based on $2{\times}2$ sensor array with four different elements ($TiO_2$, $SnO_2$, $WO_3$ and $In_2O_3$ thin films) fabricated by rf sputter. Each thin film was deposited onto the selected $SiO_2$/Si substrate with Pt interdigitated electrodes (IDEs) of $5{\mu}m$ spacing which were fabricated on a $SiO_2$/Si substrate using photolithography and dry etching. For 5 ppm $NO_2$ and 50 ppm CO, each thin film sensor has a different response to offers the distinguishable response pattern for different gas molecules. Compared with the conventional micro-fabrication technology, $2{\times}2$ sensor array with such remarkable response pattern will be open a new foundation for monolithic integration of high-performance chemoresistive sensors with simplicity in fabrication, low cost, high reliablity, and multifunctional smart sensors for environmental monitoring.

The Reverse Link Performance Analysis of cdma2000 Cellular System considering Adaptive Array Antenna (적응 배열 안테나를 고려한 cdma2000 셀룰러 시스템의 역방향 링크 성능 분석)

  • Park, Jong-Yong;Kim, Hang-Rae;Han, Tae-Young;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.313-322
    • /
    • 2003
  • In this paper, the reverse link performance of imperfect power controlled cdma2000 cellular system that using array at a base station is analyzed, when MCGM beamforming algorithm and power control error is considered in shadowing. The blocking probability of the cdma2000 cellular system based on array parameters, E$\_$b//N$\_$0/ and interference statistics is calculated, and then the system capacity is calculated at a specific blocking probability. When the blocking probability is set 1 %, PCE(power control error) is 2 dB, M=2, 4, 8, 10, the capacity of cdma2000 is increased 2.3 ∼ 2.5 times higher than IS-95.