• 제목/요약/키워드: SLC25A26

검색결과 4건 처리시간 0.023초

한국인의 SLC25A26 유전자 다형성과 위염, 위궤양과의 상관성에 관한 연구 (A Study on the Correlation between SLC25A26 Polymorphism and Gastritis and Gastric Ulcers in Koreans)

  • 박소연;황다현
    • 대한임상검사과학회지
    • /
    • 제55권4호
    • /
    • pp.291-297
    • /
    • 2023
  • 위염과 위궤양은 위 점막에 염증이 생기고 상처가 생기는 것을 말한다. 과거 연구는 주로 환경적 요인이 위 질환의 주요 요인이라는 관점에서 이루어졌으나, 최근 유전자 연구의 발전으로 유전적 요인의 중요성이 강조되고 있다. SLC25A26은 활성산 소종의 축적과 관련이 있는 유전자이다. 산화 스트레스는 염증반응을 촉진하여 활성 산소를 증가시키고 세포 손상을 유발하기 때문에 이는 위 질환의 발생과 관련이 있을 것이라 추정된다. 본 연구에서는 SLC25A26과 위 질환과의 연관성을 분석하였다. 국내 위 질환 환자 1,369명과 건강한 대조군 7,471명을 대상으로 SLC25A26 내 다형성을 분석하였다. 그 결과 11개의 단일 염기 다형성(single nucleotide polymorphism, SNP) (genotype)과 13개의 SNP (imputation)가 통계적인 유의성(P<0.05)을 가지고 높은 위 질환과의 상대 위험도를 보였다. 그 중 SLC25A26의 rs13874가 위 질환과 높은 연관성을 보였다. 유전자형 기반 mRNA 발현 분석에 따르면 SLC25A26이 minor allele를 가지면 mRNA 발현이 증가하고 이는 산화 스트레스를 증가시킬 가능성이 있다. 결론적으로 SLC25A26 다형성은 위질환과 관련이 있어 우리나라 인구에서 위 질환 관리의 새로운 지침에 대한 근거를 제공할 수 있을 것이다.

Idiopathic infantile hypercalcemia with severe nephrocalcinosis, associated with CYP24A1 mutations: a case report

  • Yoo, Jeesun;Kang, Hee Gyung;Ahn, Yo Han
    • Childhood Kidney Diseases
    • /
    • 제26권1호
    • /
    • pp.63-67
    • /
    • 2022
  • Nephrocalcinosis often occurs in infants and is caused by excessive calcium or vitamin D supplementation, neonatal primary hyperparathyroidism, and genetic disorders. Idiopathic infantile hypercalcemia (IIH), a rare cause of nephrocalcinosis, results from genetic defects in CYP24A1 or SLC34A1. Mutations in CYP24A1, which encodes 25-hydroxyvitamin D 24-hydroxylase, disrupt active vitamin D degradation. IIH clinically manifests as failure to thrive and hypercalcemia within the first year of life and usually remits spontaneously. Herein, we present a case of IIH wih CYP24A1 mutations. An 11-month-old girl visited our hospital with incidental hypercalcemia. She showed failure to thrive, and her oral intake had decreased over time since the age of 6 months. Her initial serum parathyroid hormone level was low, 25-OH vitamin D and 1,25(OH)2 vitamin D levels were normal, and renal ultrasonography showed bilateral nephrocalcinosis. Whole-exome sequencing revealed compound heterozygous variants in CYP24A1 (NM_000782.4:c.376C>T [p.Pro126Ser] and c.1310C>A [p.Pro437His]). Although her hypercalcemia and poor oral intake spontaneously resolved in approximately 8 months, we suggested that her nephrocalcinosis and renal function be regularly checked in consideration of potential asymptomatic renal damage. Hypercalcemia caused by IIH should be suspected in infants with severe nephrocalcinosis, especially when presenting with failure to thrive.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권5호
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

Effect of black chokeberry on skeletal muscle damage and neuronal cell death

  • Kim, Jisu;Lee, Kang Pa;Beak, Suji;Kang, Hye Ra;Kim, Yong Kyun;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제23권4호
    • /
    • pp.26-31
    • /
    • 2019
  • [Purpose] Numerous epidemiological studies have shown that it is possible to prescribe exercise for neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. However, despite the availability of diverse scientific knowledge, the effects of exercise in this regard are still unclear. Therefore, this study attempted to investigate a substance, such as black chokeberry (Aronia melanocapa L.) that could improve the ability of the treatment and enhance the benefits of exercising in neurodegenerative diseases. [Methods] The cell viability was tested with 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolim-5-carboxanilide and the cells were stained with ethidium homodimer-1 solution. The mRNA expression levels were evaluated by microarray. The active compounds of black chokeberry ethanolic extract (BCE) were analyzed by gas chromatography. The chemical shift analysis in the brain was performed using magnetic resonance spectroscopy. [Results] BCE treatment decreased hydrogen peroxide-induced L6 cell death and beta amyloid induced primary neuronal cell death. Furthermore, BCE treatment significantly reduced the mRNA levels of the inflammatory factors, such as IL-1α, Cxcl13, IL36rn, Itgb2, Epha2, Slamf8, Itgb6, Kdm6b, Acvr1, Cd6, Adora3, Cd27, Gata3, Tnfrsf25, Cd40lg, Clec10a, and Slc11a1, in the primary neuronal cells. Next, we identified 16 active compounds from BCE, including D-mannitol. In vivo, BCE (administered orally at a dosage of 50 mg/kg) significantly regulated chemical shift in the brain. [Conclusion] Our findings suggest that BCE can serve as a candidate for neurodegenerative disease therapy owing to its cyto-protective and anti-inflammatory effects. Therefore, BCE treatment is expected to prevent damage to the muscles and neurons of the athletes who continue high intensity exercise. In future studies, it would be necessary to elucidate the effects of combined BCE intake and exercise.