DOI QR코드

DOI QR Code

A Study on the Correlation between SLC25A26 Polymorphism and Gastritis and Gastric Ulcers in Koreans

한국인의 SLC25A26 유전자 다형성과 위염, 위궤양과의 상관성에 관한 연구

  • Soyeun PARK (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Dahyun HWANG (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
  • 박소연 (호서대학교 생명보건대학 임상병리학과) ;
  • 황다현 (호서대학교 생명보건대학 임상병리학과)
  • Received : 2023.09.15
  • Accepted : 2023.11.28
  • Published : 2023.12.31

Abstract

Gastritis is an inflammation of the gastric mucosa and gastric ulcers are a break in the mucosa of the stomach lining. Past research on gastritis and gastric ulcers has been mainly conducted from the perspective that environmental factors are the primary cause of these gastric diseases. However, recently the importance of genetic factors has been emphasized due to current developments in genetic research. The SLC25A26 gene is believed to be associated with the accumulation of reactive oxygen species. Oxidative stress promotes an inflammatory response, which increases the production of free radicals and causes cellular damage, and these lead to the development of gastric diseases. In this study, the correlation between SLC25A26 and gastric diseases was analyzed. Polymorphisms in SLC25A26 were analyzed in 1,369 domestic gastric disease patients and 7,471 healthy controls. As a result, 11 single nucleotide polymorphisms (SNPs) (in the genotype) and 13 SNPs (in the imputation) showed statistical significance (P<0.05), and high relative risk of gastric diseases. Among them, the rs13874 allele of SLC25A26 showed a highly significant association with gastric diseases. In the genotype-based mRNA expression analysis, the minor allele (C) group showed increased mRNA expression and this could increase oxidative stress. In conclusion, SLC25A26 polymorphisms are associated with gastric diseases. These results may provide a basis for new guidelines for gastric disease management in the Korean population.

위염과 위궤양은 위 점막에 염증이 생기고 상처가 생기는 것을 말한다. 과거 연구는 주로 환경적 요인이 위 질환의 주요 요인이라는 관점에서 이루어졌으나, 최근 유전자 연구의 발전으로 유전적 요인의 중요성이 강조되고 있다. SLC25A26은 활성산 소종의 축적과 관련이 있는 유전자이다. 산화 스트레스는 염증반응을 촉진하여 활성 산소를 증가시키고 세포 손상을 유발하기 때문에 이는 위 질환의 발생과 관련이 있을 것이라 추정된다. 본 연구에서는 SLC25A26과 위 질환과의 연관성을 분석하였다. 국내 위 질환 환자 1,369명과 건강한 대조군 7,471명을 대상으로 SLC25A26 내 다형성을 분석하였다. 그 결과 11개의 단일 염기 다형성(single nucleotide polymorphism, SNP) (genotype)과 13개의 SNP (imputation)가 통계적인 유의성(P<0.05)을 가지고 높은 위 질환과의 상대 위험도를 보였다. 그 중 SLC25A26의 rs13874가 위 질환과 높은 연관성을 보였다. 유전자형 기반 mRNA 발현 분석에 따르면 SLC25A26이 minor allele를 가지면 mRNA 발현이 증가하고 이는 산화 스트레스를 증가시킬 가능성이 있다. 결론적으로 SLC25A26 다형성은 위질환과 관련이 있어 우리나라 인구에서 위 질환 관리의 새로운 지침에 대한 근거를 제공할 수 있을 것이다.

Keywords

Acknowledgement

This study was conducted with bioresources from National Biobank of Korea, the Korea Disease Control and Prevention Agency, Republic of Korea (2021-023).

References

  1. Oh JH. Study on association between an H-RAS gene polymorphism and gastric cancer development. Korean J Gastroenterol. 2010;56:121-122. https://doi.org/10.4166/kjg.2010.56.2.121 
  2. Du J, Li XH, Liu F, Li WQ, Gong ZC, Li YJ. Role of the outer inflammatory protein a/cystine-glutamate transporter pathway in gastric mucosal injury induced by Helicobacter pylori. Clin Transl Gastroenterol. 2020;11:e00178. https://doi.org/10.14309/ctg.0000000000000178 
  3. Yoon K, Kim N. Significance of Helicobacter pylori eradication on atrophic gastritis and intestinal metaplasia. Korean J Helicobacter Up Gastrointest Res. 2020;20:107-116. https://doi.org/10.7704/kjhugr.2020.0018 
  4. Kim HH. Helicobacter pylori infection and metabolic disease. Korean J Med. 2013;84:781-788. https://doi.org/10.3904/kjm.2013.84.6.781 
  5. Makola D, Peura DA, Crowe SE. Helicobacter pylori infection and related gastrointestinal diseases. J Clin Gastroenterol. 2007;41: 548-558. https://doi.org/10.1097/mcg.0b013e318030e3c3 
  6. Song SB, Chung GJ, Jung HJ, Jang JY, Chung HY, Kim ND, et al. Suppression of reactive oxygen species generation as a part of antioxidative effect of plant extracts. Korean J Food Sci Technol. 2021;53:706-714. https://doi.org/10.9721/KJFST.2021.53.6.706 
  7. Roe I, Nam S, Kim J, Shin J, Bang W, Yang M. Association of the myeloperoxidase -463G→ A polymorphism with development of atrophy in Helicobacter pylori-infected gastritis. Am J Gastroenterol. 2002;97:1629-1634. https://doi.org/10.1111/j.1572-0241.2002.05899.x 
  8. Schober FA, Tang JX, Sergeant K, Moedas MF, Zierz CM, Moore D, et al. Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease. Hum Mol Genet. 2022;31: 2049-2062. https://doi.org/10.1093/hmg/ddac002 
  9. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909-950. https://doi.org/10.1152/physrev.00026.2013 
  10. Cheng GP, Guo SM, Yin Y, Li YY, He X, Zhou LQ. Aberrant expression of mitochondrial SAM transporter SLC25A26 impairs oocyte maturation and early development in mice. Oxid Med Cell Longev. 2022;2022:1681623. https://doi.org/10.1155/2022/1681623 
  11. Malaty HM, Kim JG, El-Zimaity HM, Graham DY. High prevalence of duodenal ulcer and gastric cancer in dyspeptic patients in Korea. Scand J Gastroenterol. 1997;32:751-754. https://doi.org/10.3109/00365529708996529 
  12. Prabha P, Karpagam T, Varalakshmi B, Packiavathy AS. Indigenous anti-ulcer activity of Musa sapientum on peptic ulcer. Pharmacognosy Res. 2011;3:232-238. https://doi.org/10.4103/0974-8490.89742 
  13. Fumoto S, Nishi J, Nakamura J, Nishida K. Gene therapy for gastric diseases. Curr Gene Ther. 2008;8:187-200. https://doi.org/10.2174/156652308784746431 
  14. Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta. 2008;1778:1978-2021. https://doi.org/10.1016/j.bbamem.2008.04.011 
  15. Kishita Y, Pajak A, Bolar NA, Marobbio CM, Maffezzini C, Miniero DV, et al. Intra-mitochondrial methylation deficiency due to mutations in SLC25A26. Am J Hum Genet. 2015;97:761-768. https://doi.org/10.1016/j.ajhg.2015.09.013 
  16. Ji Y, Wang S, Cheng Y, Fang L, Zhao J, Gao L, et al. Identification and characterization of novel compound variants in SLC25A26 associated with combined oxidative phosphorylation deficiency 28. Gene. 2021;804:145891. https://doi.org/10.1016/j.gene.2021.145891 
  17. Popovic D, Stojanovic M, Milosavljevic T, Stojkovic-Lalosevic M, Glisic T, Savic P, et al. Oxidative stress in gastrointestinal ulcer disease: a gastroenterologist's view. J Gastrointestin Liver Dis. 2023;32:277-282. https://doi.org/10.15403/jgld-5172 
  18. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4:5. https://doi.org/10.1186/1475-2840-4-5 
  19. Abo El-Magd NF, Barbosa PO, Nick J, Covalero V, Grignetti G, Bermano G. Selenium, as selenite, prevents adipogenesis by modulating selenoproteins gene expression and oxidative stress-related genes. Nutrition. 2022;93:111424. https://doi.org/10.1016/j.nut.2021.111424 
  20. Yu C, Qiu J, Xiong M, Ren B, Zhong M, Zhou S, et al. Protective effect of Lizhong Pill on nonsteroidal anti-inflammatory drug-induced gastric mucosal injury in rats: possible involvement of TNF and IL-17 signaling pathways. J Ethnopharmacol. 2024;318(Pt B):116991. https://doi.org/10.1016/j.jep.2023.116991