• Title/Summary/Keyword: SLAM (Simultaneous Localization And Mapping)

Search Result 121, Processing Time 0.021 seconds

Image Enhancement for Visual SLAM in Low Illumination (저조도 환경에서 Visual SLAM을 위한 이미지 개선 방법)

  • Donggil You;Jihoon Jung;Hyeongjun Jeon;Changwan Han;Ilwoo Park;Junghyun Oh
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.66-71
    • /
    • 2023
  • As cameras have become primary sensors for mobile robots, vision based Simultaneous Localization and Mapping (SLAM) has achieved impressive results with the recent development of computer vision and deep learning. However, vision information has a disadvantage in that a lot of information disappears in a low-light environment. To overcome the problem, we propose an image enhancement method to perform visual SLAM in a low-light environment. Using the deep generative adversarial models and modified gamma correction, the quality of low-light images were improved. The proposed method is less sharp than the existing method, but it can be applied to ORB-SLAM in real time by dramatically reducing the amount of computation. The experimental results were able to prove the validity of the proposed method by applying to public Dataset TUM and VIVID++.

Development of Map Building Algorithm for Mobile Robot by Using RFID (모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발)

  • Kim, Si-Seup;Seon, Jeong-An;Kee, Chang-Doo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

Data Association of Robot Localization and Mapping Using Partial Compatibility Test (Partial Compatibility Test 를 이용한 로봇의 위치 추정 및 매핑의 Data Association)

  • Yan, Rui Jun;Choi, Youn Sung;Wu, Jing;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.129-138
    • /
    • 2016
  • This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

Line-Based SLAM Using Vanishing Point Measurements Loss Function (소실점 정보의 Loss 함수를 이용한 특징선 기반 SLAM)

  • Hyunjun Lim;Hyun Myung
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.330-336
    • /
    • 2023
  • In this paper, a novel line-based simultaneous localization and mapping (SLAM) using a loss function of vanishing point measurements is proposed. In general, the Huber norm is used as a loss function for point and line features in feature-based SLAM. The proposed loss function of vanishing point measurements is based on the unit sphere model. Because the point and line feature measurements define the reprojection error in the image plane as a residual, linear loss functions such as the Huber norm is used. However, the typical loss functions are not suitable for vanishing point measurements with unbounded problems. To tackle this problem, we propose a loss function for vanishing point measurements. The proposed loss function is based on unit sphere model. Finally, we prove the validity of the loss function for vanishing point through experiments on a public dataset.

Side Scan Sonar based Pose-graph SLAM (사이드 스캔 소나 기반 Pose-graph SLAM)

  • Gwon, Dae-Hyeon;Kim, Joowan;Kim, Moon Hwan;Park, Ho Gyu;Kim, Tae Yeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.385-394
    • /
    • 2017
  • Side scanning sonar (SSS) provides valuable information for robot navigation. However using the side scanning sonar images in the navigation was not fully studied. In this paper, we use range data, and side scanning sonar images from UnderWater Simulator (UWSim) and propose measurement models in a feature based simultaneous localization and mapping (SLAM) framework. The range data is obtained by echosounder and sidescanning sonar images from side scan sonar module for UWSim. For the feature, we used the A-KAZE feature for the SSS image matching and adjusting the relative robot pose by SSS bundle adjustment (BA) with Ceres solver. We use BA for the loop closure constraint of pose-graph SLAM. We used the Incremental Smoothing and Mapping (iSAM) to optimize the graph. The optimized trajectory was compared against the dead reckoning (DR).

SLAM Method by Disparity Change and Partial Segmentation of Scene Structure (시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법)

  • Choi, Jaewoo;Lee, Chulhee;Eem, Changkyoung;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.132-139
    • /
    • 2015
  • Visual SLAM(Simultaneous Localization And Mapping) has been used widely to estimate a mobile robot's location. Visual SLAM estimates relative motions with static visual features over image sequence. Because visual SLAM methods assume generally static features in the environment, we cannot obtain precise results in dynamic situation including many moving objects: cars and human beings. This paper presents a stereo vision based SLAM method in dynamic environment. First, we extract disparity map with stereo vision and compute optical flow. We then compute disparity change that is the estimated flow field between stereo views. After examining the disparity change value, we detect ROIs(Region Of Interest) in disparity space to determine dynamic scene objects. In indoor environment, many structural planes like walls may be determined as false dynamic elements. To solve this problem, we segment the scene into planar structure. More specifically, disparity values by the stereo vision are projected to X-Z plane and we employ Hough transform to determine planes. In final step, we remove ROIs nearby the walls and discriminate static scene elements in indoor environment. The experimental results show that the proposed method can obtain stable performance in dynamic environment.

An Evaluation System to Determine the Completeness of a Space Map Obtained by Visual SLAM (Visual SLAM을 통해 획득한 공간 지도의 완성도 평가 시스템)

  • Kim, Han Sol;Kam, Jae Won;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.417-423
    • /
    • 2019
  • This paper presents an evaluation system to determine the completeness of a space map obtained by a visual SLAM(Simultaneous Localization And Mapping) algorithm. The proposed system consists of three parts. First, the proposed system detects the occurrence of loop closing to confirm that users acquired the information from all directions. Thereafter, the acquired map is divided with regular intervals and is verified whether each area has enough map points to successfully estimate users' position. Finally, to check the effectiveness of each map point, the system checks whether the map points are identifiable even at the location where there is a large distance difference from the acquisition position. Experimental results show that space maps whose completeness is proven by the proposed system has higher stability and accuracy in terms of position estimation than other maps that are not proven.

An Effective SLAM for Autonomous Mobile Robot Navigation in Irregular Surface using Redundant Extended Kalman Filter (추가적 확장 칼만 필터를 이용한 불규칙적인 바닥에서 자율 이동 로봇의 효율적인 SLAM)

  • Park, Jae-Yong;Choi, Jeong-Won;Lee, Suk-Gyu;Park, Ju-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.218-224
    • /
    • 2009
  • This paper proposes an effective SLAM based on redundant extended Kalman filter for robot navigation in an irregular surface to enhance the accuracy of robot's pose. To establish an accurate model of a caterpillar type robot is very difficult due to the mechanical complexity of the system which results in highly nonlinear behavior. In addition, for robot navigation on an irregular surface, its control suffers from the uncertain pose of the robot heading closely related to the condition of the floor. We show how this problem can be overcome by the proposed approach based on redundant extended Kalman filter through some computer simulation results.

The Implementation of Graph-based SLAM Using General Graph Optimization (일반 그래프 최적화를 활용한 그래프 기반 SLAM 구현)

  • Ko, Nak-Yong;Chung, Jun-Hyuk;Jeong, Da-Bin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.637-644
    • /
    • 2019
  • This paper describes an implementation of a graph-based simultaneous localization and mapping(SLAM) method called the General Graph Optimization. The General Graph Optimization formulates the SLAM problem using nodes and edges. The nodes represent the location and attitude of a robot in time sequence, and the edge between the nodes depict the constraint between the nodes. The constraints are imposed by sensor measurements. The General Graph Optimization solves the problem by optimizing the performance index determined by the constraints. The implementation is verified using the measurement data sets which are open for test of various SLAM methods.

Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments (ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2022
  • In this study, we developed a robot operating system (ROS)-based autonomous driving robot that estimates the robot's position in underground mines and drives and returns through multiple waypoints. Autonomous driving robots utilize SLAM (Simultaneous Localization And Mapping) technology to generate global maps of driving routes in advance. Thereafter, the shape of the wall measured through the LiDAR sensor and the global map are matched, and the data are fused through the AMCL (Adaptive Monte Carlo Localization) technique to correct the robot's position. In addition, it recognizes and avoids obstacles ahead through the LiDAR sensor. Using the developed autonomous driving robot, experiments were conducted on indoor experimental sites that simulated the underground mine site. As a result, it was confirmed that the autonomous driving robot sequentially drives through the multiple waypoints, avoids obstacles, and returns stably.